
Gadget User Guide

Edited by James Begley

August 15, 2012

Contents

i

Contents

ii

Chapter 1

Introduction to Gadget

Gadget is the Globally applicable Area Disaggregated General Ecosystem Toolbox. Gadget is
a flexible and powerful software tool that has been developed to model marine ecosystems, in-
cluding both the impact of the interactions between species and the impact of fisheries harvest-
ing the species. Gadget simulates these processes in a biologically realistic manner, and uses a
framework to test the development of the modelled ecosystem in a statistically rigorous manner.
Gadget has successfully been used to investigate the population dynamics of stock complexes in
Icelandic waters, the Barents Sea, the North Sea and the Irish and Celtic Seas.

1.1 What is Gadget?

Gadget can run complicated statistical models which take many features of the ecosystem into
account. Gadget works by running an internal forward projection model based on many pa-
rameters describing the ecosystem, and then comparing the output from this model to observed
measurements to get a likelihood score. The model ecosystem parameters can then be adjusted,
and the model re-run, until an optimum is found, which corresponds to the model with the low-
est likelihood score. This iterative, computationally intensive process is handled within Gadget,
using a robust minimisation algorithm. The Gadget software framework consists of three parts:

• a parametric model to simulate the ecosystem

• statistical functions to compare the model output to data

• search algorithms to optimise the model parameters

Gadget allows the user to include a number of features of the ecosystem into the model: One
or more species, each of which may be split into multiple components; multiple areas with mi-
gration between areas; predation between and within species; growth; maturation; reproduction
and recruitment; multiple commercial and survey fleets taking catches from the populations.

Like any large piece of code, Gadget is based on previous ideas by several authors. Conceptually
the modelling framework extends earlier multi species programming work such as MSVPA and
MULTSPEC into a more generic statistical framework. Alternatively, Gadget is a conceptual ex-
tension of the Stock Synthesis statistical assessment single-species framework into a multi species
setting.

The initial BORMICON code was developed as part of a multi species programme implemented
at the Marine Research Institute in Reykjavik, Iceland, starting in 1992 with Ólafur K Pálsson
as project coordinator and Gunnar Stefánsson coordinating the modelling work. Subsequently
the code became the basis for Fleksibest at the Institute of Marine Research in Bergen, Norway.

1

1 Introduction to Gadget

Further development work in 1999-2003 was partly funded by EU grant QLK5-CT1999-01609
(”Development of Structurally Detailed Statistically Testable Models of Marine Populations”).
Development work for 2004-2006 is currently being partly funded by EU grant 502482 (”Critical
Interactions Between Species and their Implications for a Precautionary Fisheries Management
in a Variable Environment - a Modelling Approach”).

The Gadget code is derived from the original BORMICON code of Halldór Narfi Stefánsson,
Höskuldur Björnsson and Hersir Sigurgeirsson. Subsequent contributions include program ad-
ditions by Morten Nygaard Åsnes and Kristin Frøysa to include the Fleksibest model. The ability
to run in parallel across a network of computers using PVM was implemented primarily by
Auðbjörg Jakobsdóttir with input from several other people, including Jón Guðmundsson who
worked on a variant based on Condor. Several mathematical additions and changes to allow
for parallel minimisation on a network were implemented by Þórdís Linda Þórarinsdóttir and
Kristjana Ýr Jónsdóttir.

More recent changes include the work to use information from tagging experiments, which was
implemented primarily by Sigurður Hannesson. The work on multivariate distributions was
implemented by Bjarki Þór Elvarsson. Recent additions including major code cleanups, modifi-
cations to the input formats and debugging operations have been led by James Begley, who is the
current maintainer of the code and coordinator of all programming efforts.

1.2 Getting Gadget

Gadget is distributed via anonymous ftp from the MRI ftp site, and the address of the top level
directory of the Gadget distributions is:

ftp://ftp.hafro.is/pub/reiknid/dst2/gadget/

The most recent version of Gadget will be available as a gzipped tarfile from this directory. This
file will be called gadget<version>.tar.gz, where <version> represents the version number of
Gadget. As a guide, the current version of Gadget is 2.1.06, so the file to be downloaded is
gadget2.1.06.tar.gz.

Gadget is a program that runs on a Unix computing platform, and is regularly tested on machines
running versions of Solaris, Linux, Mac OSX and Cygwin (a Unix emulator for Microsoft Win-
dows machines). It should also run on other versions of Unix, but this may require modifications
to the makefile in order to do so. Gadget is distributed as a set of source code files, which need
to be compiled into an executable program before it can be run. To allow for various different
versions, the makefile has a list of supported computing platforms, so the makefile should be
checked (and if necessary changed) to ensure that the required options are available before the
source code is compiled. The default options in the makefile will compile Gadget for a Linux ma-
chine, using the GNU C++ compiler. A summary of the commands required to compile Gadget,
using the default options for a Linux machine from the downloaded file are:

gunzip gadget<version>.tar.gz
tar -xvf gadget<version>.tar
cd source
make

The most recent copy of this document will also be placed on the MRI ftp site, along with copies of
any example datasets that are available. These datasets will be checked so that they run without
any problems, and will also contain some comments to help the user understand the format of
the data files. It is recommended that this user guide is read in conjunction with an example
dataset.

2

1 Introduction to Gadget

A web site has been set up that contains details of the recent changes to Gadget, documentation
updates and other news. This is also a good place to look for more information about Gadget.
The address of the Gadget web site is http://www.hafro.is/gadget

Throughout this document any text in <angled brackets> should be adjusted by the user to
make it relevant to the current situation, so for example the text above should be altered to the
following to compile Gadget version 2.1.06 on a Linux machine:

gunzip gadget2.1.06.tar.gz
tar -xvf gadget2.1.06.tar
cd source
make

1.3 Running Gadget

Gadget is a command line program that runs on a Linux computing platform. To start Gadget,
simply type the following at a standard Linux prompt:

gadget <options>

where <options> are a combination of the starting switches described in the next section. Note
that this assumes that the Gadget executable has been placed in a directory that is included in
the $PATH, which might not be the case for some Linux distributions. If this is the case, Gad-
get should be started by including the path to the Gadget executable, for example by typing
./gadget if the Gadget executable is in the current directory.

Gadget is not an interactive program, so once it has started there is no need for any further
input from the user. However, if Gadget was started incorrectly (for example, using the wrong
input files) then Gadget can be stopped by pressing <CTRL><C>, which will interrupt the
calculations, displaying a menu from which it is possible to either store the current calculations
to a text file, or to exit (by pressing <Q>).

When Gadget starts, it will look for a file called ”main”, which contains a list of all the other data
files required. Gadget will search for this file in the following 2 locations:

1. the directory specified by the Linux environment variable called ”GADGET_WORKING_DIR”,
optionally taking data from the directory specified by the Linux environment variable
called ”GADGET_DATA_DIR”

2. the current directory (ie. from where Gadget has been started) if these environment vari-
ables have not been set (note that this is the default location)

When Gadget is reading in the input data files, these files will be checked to ensure that they are
in the correct format, and if there is an error in the format Gadget will print an error message
and stop. Note that when Gadget is checking the format of a data file containing a number of
columns (eg. the ”area” file) it will only check the first data line in the file (so, for the case of the
”area” file it will check that there are 4 entries on the first row and then assume that all the other
rows also have 4 entries). Hopefully, there should be enough information in these error messages
to lead the user to the input file that is causing the error.

If all else fails, and the error messages do not lead the user to the source of the error, then there
is an email address set up for any difficulties or questions that may arise, or reporting any bugs
that get found. In addition to sorting out any problems that the user may be getting, we can also
try to help with interpreting the output. This email address is gadgethelp@hafro.is

Sending an email to this address should get a response within a couple of working days. This
email address can also be used to give us any feedback on the usefulness (or otherwise) of Gadget,
so let us know what you think!

3

1 Introduction to Gadget

1.4 Starting Switches

The following is a list of the command line switches that Gadget will recognise, together with a
brief description of what the switch means to the running of the Gadget model.

gadget -s

Starting Gadget with the -s switch will start a simulation run, where a single run of the model
will take place. This option is useful since it will give the model output (see Print Files, chap-
ter ??), and it is used when running large Gadget models, using the paramin parallel processing
optimiser to find the optimum.

gadget -l

Starting Gadget with the -l switch will start a optimising run, where the overall likelihood score
will be reduced to an optimum, depending on the optimising information given (see the -opt
switch).

gadget -n

Starting Gadget with the -n switch will start a network run, used in conjunction with the paramin
optimiser to find an optimal solution for large models.

gadget -v
gadget --version

Starting Gadget with the -v (or --version) switch will display the version of Gadget that is being
run.

gadget -h
gadget --help

Starting Gadget with the -h (or --help) switch will display a help screen, giving information about
the various starting switches that can be used.

gadget -i <filename>

Starting Gadget with the -i switch will give Gadget an inputfile file from which the initial values
and bounds of any variables can be read (see Parameter Files, chapter ??, for more information
on the format of this file).

gadget -opt <filename>

Starting Gadget with the -opt switch will give Gadget an optimisation input file, from which
the information about the optimisation routines will be read. This will specify the type of opti-
misation to perform, and also parameters for that optimisation routine (see Optimisation Files,
chapter ??, for more information on the format of this file).

gadget -main <filename>

Starting Gadget with the -main switch will specify a filename for the main Gadget model input
file, which contains links to all the other data files that are to be used by Gadget (see Main File,
section ??, for more information on the format of this file). If Gadget is started without the -main
switch, Gadget will use the default filename ”main” as the name for the main file.

4

1 Introduction to Gadget

gadget -p <filename>

Starting Gadget with the -p switch specifies the file that Gadget will use to print the final values
and bounds of the variables, in the same format as for the inputfile. This file can then be used
as the starting point for a subsequent Gadget run, if required. This file will always be generated,
and if Gadget is started without the -p switch the default filename is ”params.out” which will be
created in the current directory (see Output Files, chapter ??, for more information on the format
of this file).

gadget -o <filename>

Starting Gadget with the -o switch specifies the file that Gadget will use to print the score from
the likelihood calculations. This file will give details on the parameters that have been used, the
likelihood components that have been used, and the values for these parameters and likelihood
components. This can be a large file if Gadget is performing an optimising run (see Output Files,
chapter ??, for more information on the format of this file).

gadget -print <number>

Starting Gadget with the -print switch will specify the frequency with which information is writ-
ten to the likelihood output file (specified with the -o switch). The default value for this is 1,
meaning that the likelihood information is written for every iteration.

gadget -precision <number>

Starting Gadget with the -precision switch will specify the number of digits to be used when
printing the output from the likelihood calculations to files specified with the -o switch.

gadget -log <filename>

Starting Gadget with the -log switch will specify a file to which Gadget will write logging mes-
sages to keep a record of internal Gadget actions. This can be a large file if Gadget is performing
an optimising run (see Log Output, section ??, for more information on the format of this file).

gadget -loglevel <number>

Starting Gadget with the -loglevel switch will specify the level of detail that is to be used by
Gadget when logging messages (both to the screen and to a log file if one has been specified with
the -log switch). If Gadget is started without the -loglevel switch then the default is for warning
messages and error messages to be shown during a simulation run (when Gadget is started with
the -s switch) and only error messages are shown during an optimising run (when Gadget is
started with the -l switch).

gadget -seed <number>

Starting Gadget with the -seed switch will specify the value that is used to initialise the random
number generator used within Gadget (see Repeatability, section ?? for more information on the
use of the random number generator within Gadget runs).

gadget -m <filename>

Starting Gadget with the -m switch will specify a file from which Gadget can read the other
command line options. This file should contain a simple list of the switches and their values, as
they would be entered from the command line.

5

1 Introduction to Gadget

gadget -printinitial <filename>

Starting Gadget with the -printinitial switch will specify a file to which Gadget will write all
internal information for the model at the start of the run (ie. the stock populations, likelihood
calculations and other information from before the first timestep). This file will be large for mod-
erately complicated models, and it is of most use for debugging purposes.

gadget -printfinal <filename>

Starting Gadget with the -printfinal switch will specify a file to which Gadget will write all inter-
nal information for the model at the end of the run (ie. the stock populations, likelihood calcu-
lations and other information from after the last timestep). This file will be large for moderately
complicated models, and it is of most use for debugging purposes.

gadget -maxratio <ratio>

Starting Gadget with the -maxratio switch will specify the maximum ratio of prey that is allowed
to be ”consumed” on any one timestep. This consumption includes both the consumption by
other stocks and the catch by any fleets. The default value is 0.95, which ensures that no mare
than 95% of the available stock biomass is consumed on a single timestep.

Most of these switches can be combined to specify more information about the Gadget run that
will be performed. For instance:

gadget -l -i inputfile.txt -o likelihood.txt -opt optinfo.txt -print 10

will start Gadget for a likelihood run, taking the initial values and information about the pa-
rameters from the file inputfile.txt, with the optimisation being done in accordance with the
information in optinfo.txt, and printing likelihood information (every 10 iterations) to the file
likelihood.txt.

Note that it is not possible to do both a simulation run and a likelihood run at the same time, and
starting Gadget with both the -l and -s switches will result in a warning, after which Gadget will
perform a simulation run, with the -l switch being ignored.

6

Chapter 2

Input Files

All the input files for Gadget are plain ASCII text files, so they can be viewed in any plain-text
text editor. Any whitespace or blank lines in the data files are ignored, so the layout of the files
can be adjusted into a easily viewable form to check the content of the files. The case of any text
in an input file is ignored by Gadget, so for example, ”Stock” and ”stock” would be interpreted
by Gadget as being the same.

Unless stated otherwise, all the input and output files use the following measurement units:

• length - all measurements are in centimetres

• weight - all measurements are in kilogrammes

• age - all measurements are in years

Gadget is a program that runs on a Linux computing platform, so the input data files must use
a Linux style end-of-line character (<linefeed>) and not a Windows style end-of-line character
(<carriage return><linefeed>). All the lines of the input files containing data should end with
an end-of-line character.

2.1 Comments in Input Files

Any of the input files used by Gadget can contain comments that are not used by Gadget. The
start of the comment is denoted by a semi-colon ”;”. Once Gadget has read as far as the semi-
colon, the rest of the line will be ignored.

2.2 What Does The # Mean?

When Gadget is performing an optimising run, a number of the parameters can be adjusted to
try to find a better fit between the modelled output and the data. The parameters that are to be
adjusted are termed ”switches” and are marked in the input files by the ’#’ character. There are
two valid formats for switches in the data file - either directly, or as part of a function.

2.2.1 Switches

The format for the switches is given by:

<numerical part>#<name>

7

2 Input Files

where the<numerical part> consists of the (optional) initial value for the switch, and the<name>
is a alpha-numerical text string used to identify the switch in the parameter file. Note that there
is no whitespace either before or after the ’#’ character. Also note that the name of the switch can-
not contain a hyphen, since this will be interpreted by Gadget as the mathematical subtraction
symbol.

Any initial value specified in the data files will be overwritten by the initial value given in the
parameter file (see chapter ??). If the initial value is not given, then a value of 1 with be assumed
by Gadget. A switch can appear in more than one place in the data files, but needs to be defined
with the same initial value each time.

Examples of valid switches in the data files can include:

1. defining a simple switch (called ”age2”) without an initial value

#age2

2. defining a switch with an initial value

10#age2

2.2.2 Functions

The format for the functions is given by:

(<function> <parameters>)

where the <function> defines the name of the function, and the <parameters> is a vectors of
the parameters to be used - either numbers or the names of switches denoted by the ’#’ character.
Note that the function is contained within (round brackets). Valid function names include the
4 mathematical operators (’*’, ’+’, ’-’ and ’/’), trigonometric functions (’sin’ and ’cos’, with the
argument in radians), logarithmic functions (’log’, ’log10’ and ’exp’), square root (’sqrt’) and a
function to generate a random number between 0 and 1 (’rand’).

Examples of valid functions for the switches in the data files can include:

1. defining a function based on a switch

(* 10 #age2)

note that in this case, Gadget will use 10 times the value of parameter ”age2”.

2. defining a function based on more than one switch

(* #area1 #age2)

note that in this case, Gadget will use the value of parameter ”area1” multiplied by the
value of parameter ”age2”.

3. nesting functions

(log (+ #area1 #age2))

note that in this case, Gadget will use the value of the natural logarithm of parameter
”area1” plus parameter ”age2”.

8

Chapter 3

Model Files

Gadget requires a number of data files to define a Gadget model. The number of data files re-
quired depends on the complexity of the Gadget model, and there is no limit on the number, or
name, of these data files. The main input file gives links to all the other data files required, and
must be specified with the ”-main <filename>” command line option, or be called ”main”.

3.1 Main File

The main Gadget input file is usually called ”main”, unless it is specified with the ”-main<filename>”
command line option. This file only contains links to other files which will make up the Gadget
model. The format for this file is:

<typeoffile> <filename>

where <typeoffile> is a keyword to tell Gadget what sort of information the file will contain,
and the name of the file is given by <filename>, relative to the directory in which the main file
resides. Where zero or more files of a certain type could be used, the main file is divided into
sections that are separated by a keyword in [square brackets]. The format for the main file is
shown below:

timefile <name of the time file>
areafile <name of the area file>
printfiles <names of the print files>
[stock]
stockfiles <names of the stock files>
[tagging]
tagfiles <names of the tag files>
[otherfood]
otherfoodfiles <names of the otherfood files>
[fleet]
fleetfiles <names of the fleet files>
[likelihood]
likelihoodfiles <names of the likelihood files>

The printfile element of the main file is optional, and can be commented out if no model output
is required. It should be noted that the keyword ”printfiles” must be present, so to comment out
the printfile section, a semi colon should be placed before the name of the printfile, as shown in
the line below:

printfiles ; <filename> commented out so no printing will take place

9

3 Model Files

3.2 Time File

This specifies the start and end times for the model run, and the number of timesteps per year.
Note that the model can run into the future, and that datasets covering only part of the overall
run can be used. Gadget splits each year up into a number of time steps, but these time steps
need not all be the same length.

The format for this file is a list of the first year and timestep, and the last year and timestep, and
how each year is to be divided into timesteps. This is done by specifying first the number of
timesteps in a year, and then the length of each timestep (in months), and Gadget will check that
the number of timesteps in a year sums up to 12. This is shown below:

firstyear <first year>
firststep <first step>
lastyear <last year>
laststep <last step>
notimesteps <how the year is split up>

Examples for how the year can be split up include:

1. 4 equal timesteps, splitting the year into quarters

notimesteps 4 3 3 3 3

2. 12 equal timesteps, splitting the year into months

notimesteps 12 1 1 1 1 1 1 1 1 1 1 1 1

3. 6 unequal timesteps, splitting the year into the following periods, <January - February>,
<March>,<April - June>,<July - September>,<October> and<November - December>

notimesteps 6 2 1 3 3 1 2

3.3 Area File

This file specifies which areas the model will be run on, and gives a time dependent temperature
for each area. Note that although the temperature data must be provided it need not actually be
used, depending on the growth and feeding options chosen for the stock file.

The format for this file is a list of the areas that are to be used (by specifying a numeric identifier
for each area), followed by the size of each area (in square kilometres) and then a listing of the
temperature for each timestep and area combination. An example of this format is given below:

areas <vector of area identifiers>
size <vector of sizes>
temperature
<year> <step> <area> <temperature>

3.4 Other Input Data Files

There are three other types of input that are important since they are used in other data files to
denote a grouping of data. These are Aggregation files, which are files used to gather data into
convenient groups, TimeVariable files, which are files used to denote variables that can vary over
time, and ActionAtTime, which is used to define the timesteps that an action takes place within
a data file.

10

3 Model Files

3.4.1 Aggregation Files

Aggregation files are important since they are used to group the data in convenient groups. They
consist of a text label (used to identify the group in the data) followed by a list of the data that the
label represents. This data will then be read in from an associated data file. There are aggregation
files to group areas, ages, lengths or preys together. Aggregation files can contain comments and
blank lines, to make the format easier to view in a text editor.

Area Aggregation

Area aggregation files contain one or more identifying labels and then a list of one or more areas
that the label refers to. The format for this is:

<label> <areas>

An example of this is:

north 1 2 6
south 3 4 5 7

This example shows that for the associated data file, the label ”north” will be interpreted as
applying to areas 1, 2 and 6 and the label ”south” will be interpreted as applying to areas 3, 4, 5
and 7.

Age Aggregation

Age aggregation files contain one or more identifying labels and then a list of one or more ages
that the label refers to. The format for this is:

<label> <ages>

An example of this is:

young 1 2 3 4
old 5 6 7

This example shows that for the associated data file, the label ”young” will be interpreted as
applying to ages 1 - 4 and the label ”old” will be interpreted as applying to ages 5 to 7.

Length Aggregation

Length aggregation files contain one or more identifying labels and then the minimum and max-
imum length that the label refers to. The format for this is:

<label> <minimum> <maximum>

When more than one length group label is defined, then the labels should be ordered so that
the smallest length group is first in the file. The data is checked, so that the maximum length
associated with label <i> is the same as the minimum length for label <i+1>. An example of
this is:

small 5 25
medium 25 55
large 55 80

This example shows that for the associated data file, the label ”small” will be interpreted as
applying to lengths 5-25cm, the label ”medium” will be interpreted as applying to the lengths
25-55cm and the label ”large” will be interpreted as applying to lengths 55-80cm.

11

3 Model Files

Prey Aggregation

Prey aggregation files contain one or more identifying labels, and then the names of the preys, the
minimum and maximum lengths for the preys and the digestion coefficients for the consumption
of the preys. The format for this is:

<label>
<prey names>
lengths <minimum> <maximum>
digestioncoefficients d0 d1 d2

The digestion coefficients define a multiplier used when calculating the consumption of the prey.
This multiplier is length dependant, and is calculated according to the digestion equation given
below:

D = d0 + d1l
d2 (3.1)

An example of a prey aggregation file is:

; for the first prey
smallcapelin
immature.capelin
lengths 5 10
digestioncoefficients 1 0 0
;
; for the second prey
mediumcapelin
immature.capelin mature.capelin
lengths 10 15
digestioncoefficients 1 0 0
;
; for the third prey
largecapelin
mature.capelin
lengths 15 20
digestioncoefficients 1 0 0

This example shows that for the associated data file, the label ”smallcapelin” will be interpreted
as applying to immature capelin (a stock called immature.capelin) of lengths 5-10cm, the label
”mediumcapelin” will be interpreted as applying to immature and mature capelin (stocks imma-
ture.capelin and mature.capelin) of lengths 10-15cm, and the label ”largecapelin” will be inter-
preted as applying to mature capelin (a stock called mature.capelin) of lengths 15-20cm.

3.4.2 TimeVariable Files

TimeVariable files are used in place of a single variable in the input files, to define variables in the
Gadget model that can vary over time. They are used by specifying the name of the TimeVariable
file in place of the value or parameter in the input file. TimeVariable files can contain comments
and blank lines, to make the format easier to view in a text editor.

TimeVariable files consist of a one word description of the data, followed by the keyword ”data”,
and then a list of the timesteps when the value of TimeVariable changes, along with the new value
for the TimeVariable. The values can either be numerical values or a parameter to be optimised.
The first timestep in the TimeVariable file must correspond to the first timestep in the model. The
basic format for this file is shown below:

12

3 Model Files

<description> ; one word description of the data
data
<year> <step> <value>

An example of a TimeVariable file is:

annualgrowth
data
; year step value
1995 1 #grow1995
1996 1 #grow1996
1997 1 #grow1997
1998 1 #grow1998
1999 1 #grow1999
2000 1 #grow2000

This example shows that the the parameter ”grow1995” is to be used for growth in 1995, ”grow1996”
is to be used in 1996 and so on through to ”grow2000” which is to be used from 2000 through to
the end of the simulation. Note that this example assumes that the first timestep of the simulation
is the first timestep in 1995.

3.4.3 ActionAtTime

ActionAtTime is a simple list of timesteps within a data file that define when a specified action
(for example printing) will take place. The format for this is:

<year> <step>

where year and step are either a valid timestep or the keyword ”all”. These can be grouped
together to specify a more complex time period.

Examples of valid ActionAtTime entries in the data files include:

1. the action taking place on the first timestep of 2002

2002 1

2. the action taking place on all timesteps of 2000

2000 all

3. the action taking place on the second timestep of each year

all 2

4. the action taking place on all timesteps of each year

all all

5. the action taking place on the first and second timesteps of each year

all 1
all 2

13

3 Model Files

14

Chapter 4

Stock Files

The stock files contain all the information that Gadget requires for each stock in the model. To
define the stock files in the Gadget model, the following lines are required in the ”main” Gadget
file:

[stock]
stockfiles <names of the stock files>

The ”main” file needs to list the files that define the stocks to be used in the model. Each stock
requires a separate stock file. The information for the stocks are very detailed, and so these stock
files are quite large and can be complicated to look at. The basic format for this file is:

stockname <name of the stock>
livesonareas <areas that the stock lives on>
minage <minimum age for the stock>
maxage <maximum age for the stock>
minlength <minimum length for the stock>
maxlength <maximum length for the stock>
dl <step size for the length groups>
refweightfile <see Reference Weight>
growthandeatlengths <see Growth and Eat Lengths>
doesgrow <see Growth>
naturalmortality <see Natural Mortality>
iseaten <see Stock Prey>
doeseat <see Stock Predator>
initialconditions <see Initial Conditions>
doesmigrate <see Migration>
doesmature <see Maturation>
doesmove <see Movement>
doesrenew <see Renewal>
doesspawn <see Spawning>
doesstray <see Straying>

The first seven lines of this file give the basic details of the stock, and are fairly self explanatory.
It should be noted that the oldest age group and the longest length group are interpreted in
Gadget as plus groups for the stock. The remaining lines give more detail about the stock, and
are covered in the sub sections below.

4.1 Reference Weight

The reference weight section lists the weight of the stock for various length groups. This is the
reference weight that can be used in the initial conditions to set up the stock, and can also be used

15

4 Stock Files

by the growth functions when calculating the increase in length of the stock due to the growth.
In the stock file, the format for the reference weight is given by:

refweightfile <name of the reference weight file>

The format of the reference weight file is simply a two column list of the length and the corre-
sponding weight for the stock. This file is ordered so that the smallest length group is given first,
up to the longest length group which is given last. The format for this file is shown below:

<length> <weight>

When this data is read into Gadget it is aggregated so that the weight is calculated for each length
group defined in the stock file.

4.2 Growth and Eat Lengths

The calculations for the growth and consumption parts of the Gadget model can be done on a
coarser scale than that defined in the stock file. The growth and eat lengths section of the stock
file gives the name of a length aggregation file that defines this length grouping. In the stock file,
the format for the growth and eat lengths is:

growthandeatlengths <name of the length aggregation file>

4.3 Growth

The growth section of the stock file determines if, and how, the stock will grow in the Gadget
model. The format for the first part of the growth section is given below:

doesgrow <0 or 1> ; 0 for no growth, 1 for growth

If there is no growth, then the following sections don’t apply, and the next section of the input
file is the natural mortality, given in section ?? below. If the stock does grow, there are various
different functions that determine the mean growth of the stock, so there are a number of different
formats that the growth data can take. Once the mean growth has been calculated, the growth
then needs to be statistically distributed to give the overall growth of the stock. Thus, after the
growth function data has been read in, there is then data for the growth implementation. The full
format for the growth of the stock is therefore given by:

doesgrow 1
growthfunction <growth function>
<format for the growth function data>
<format for the growth implementation>

The<growth function> defines what growth function is to be used to calculate the growth of the
stock. Currently, there are 7 growth functions defined, so valid function names are:

multspec - use the MULTSPEC growth function
weightvb - use the WeightVB growth function
weightjones - use the WeightJones growth function
weightvbexpanded - use the WeightVBExpanded growth function
lengthvb - use the LengthVB growth function
lengthpower - use the LengthPower growth function
lengthvbsimple - use the LengthVBSimple growth function

16

4 Stock Files

4.3.1 MULTSPEC Growth Function

This growth function is a simplified ”MULTSPEC” growth equation, with the increase in length
for each length group of the stock given by equation ??, and the corresponding increase in weight
of the stock given by equation ?? below:

∆Li = ∆tp0Li
p1ψ(p2T + p3) (4.1)

∆Wi = ∆tp4Wi
p5(ψ − p6)(p7T + p8) (4.2)

where:
< ∆t > is the length of the timestep
< T > is the temperature
< ψ > is the feeding level (see section ??)

There are 4 parameters in the length equation, and 5 in the weight equation, giving a total of 9
parameters to be declared to define this growth function. This is given in the main stock file by
declaring a single vector with 9 components, consisting of the 4 length parameters followed by
the 5 weight parameters. This is shown below:

growthparameters <growth parameters vector>

4.3.2 WeightVB Growth Function

This growth function is a form of the Von Bertalanffy growth equation, extended to introduce the
concept of starvation to the growth function. The increase in the weight for each length group the
stock is given by equation ??, and the corresponding increase in the length of the stock is given
by equation ?? below:

∆Wi = ∆tq0e
q1T

((
Wi

q2

)q4
−
(
Wi

q3

)q5)
(4.3)

r =
W − (p0 + p8 (p1 + p2p8))Wref

W
(4.4)

f(x) =


0 if p3 + p4x ≤ 0

p5 if p3 + p4x ≥ p5

p3 + p4x otherwise
(4.5)

∆Li =
∆Wi

p6p7lp7−1
f(r) (4.6)

where:
< ∆t > is the length of the timestep
< T > is the temperature
< Wref > is the reference weight

Comparing the weight to the reference weight (by using equations ?? and ??) introduces the
concept of starvation to the Gadget model. When the weight of the population is less than a
function of the reference weight, there is no length increase (ensuring that the growth only has
an effect on the weight).

There are 6 parameters for the equation for increase of the weight, and a further 9 parameters for
the increase in length. These are declared in 2 vectors, as shown below:

wgrowthparameters <weight parameters vector>
lgrowthparameters <length parameters vector>

17

4 Stock Files

4.3.3 WeightJones Growth Function

This growth function is a form of the Jones growth equation, extended to introduce the concept
of starvation to the growth function. The increase in the weight for each length group the stock
is given by equation ??, and the corresponding increase in the length of the stock is given by
equation ?? below:

∆Wi = ∆t

(
C

q0W
q1
i

− q2W
q3
i e

(q4T+q5)

)
(4.7)

r =
W − (p0 + ψ (p1 + p2ψ))Wref

W
(4.8)

f(x) =


0 if p3 + p4x ≤ 0

p5 if p3 + p4x ≥ p5

p3 + p4x otherwise
(4.9)

∆Li =
∆Wi

p6p7lp7−1
f(r) (4.10)

where:
< ∆t > is the length of the timestep
< C > is the consumption (see section ??)
< T > is the temperature
< ψ > is the feeding level (see section ??)
< Wref > is the reference weight

There are 6 parameters for the equation for increase of the weight, and a further 8 parameters for
the increase in length. These are declared in 2 vectors, as shown below:

wgrowthparameters <weight parameters vector>
lgrowthparameters <length parameters vector>

4.3.4 WeightVBExpanded Growth Function

This growth function is an expanded form of the Von Bertalanffy growth equation, with addi-
tional information to allow for differing growth depending on the year, timestep and area. The
increase in the weight of the stock is given by equation ?? below, and the corresponding increase
in the length of the stock is identical to that for WeightVB growth function (see section ??) given
by equation ??:

∆Wi = ∆tYySsAaq0e
q1T

((
Wi

q2

)q4
−
(
Wi

q3

)q5)
(4.11)

where:
< ∆t > is the length of the timestep
< T > is the temperature
< Yy > is a multiplier for year y
< Ss > is a multiplier for step s
< Aa > is a multiplier for area a

There are 6 parameters for the equation for increase of the weight, and a further 9 parameters for
the increase in length and these are declared in 2 vectors. Additionally there are vectors for the
year, step and area multipliers, as is shown below:

18

4 Stock Files

wgrowthparameters <weight parameters vector>
lgrowthparameters <length parameters vector>
yeareffect <year effect vector>
stepeffect <step effect vector>
areaeffect <area effect vector>

Note that the <year effect> vector requires one entry for each year, the <step effect> vector
requires one entry for each step and the <area effect> vector requires one entry for each area.

4.3.5 LengthVB Growth Function

This growth function is a simplified form of the Von Bertalanffy growth equation. The increase
in the length for each length group the stock is given by equation ??, with the corresponding
increase in the weight of the stock read in from a data file:

∆Li = (q0 − Li)
(
1− e−q1∆t

)
(4.12)

where:
< ∆t > is the length of the timestep

There are a total of 2 parameters for the equation for increase in length. These are declared in a
single vector, as shown below:

growthparameters <growth parameters vector>
weightgrowthfile <weight data file>

The weight data file consists of a list of the year, timestep, area and length group label, followed
by the mean increase in weight for that timestep/area/length combination. The length group
label used must match those specified in the growthandeatlengths length aggregation file. The
format of this file is shown below:

<year> <step> <area> <length group> <number>

4.3.6 LengthPower Growth Function

This growth function uses a simple power-based growth equation to calculate the increase in
length. The increase in the length for each length group the stock is given by equation ??, with
the corresponding increase in the weight of the stock read in from a data file:

∆Li = Lq0i e
q1∆t (4.13)

where:
< ∆t > is the length of the timestep

There are a total of 2 parameters for the equation for increase in length. These are declared in a
single vector, as shown below:

growthparameters <growth parameters vector>
weightgrowthfile <weight data file>

The weight data file consists of a list of the year, timestep, area and length group label, followed
by the mean increase in weight for that timestep/area/length combination. The length group
label used must match those specified in the growthandeatlengths length aggregation file. The
format of this file is shown below:

<year> <step> <area> <length group> <number>

19

4 Stock Files

4.3.7 LengthVBSimple Growth Function

This growth function is a simplified form of the Von Bertalanffy growth equation. The increase in
the length for each length group the stock is given by equation ??, and the corresponding increase
in the weight of the stock is given by equation ?? below:

∆Li = (L∞ − Li)
(
1− e−κ∆t

)
(4.14)

∆Wi = α
(

(Li + ∆Li)
β − Liβ

)
(4.15)

where:
< ∆t > is the length of the timestep

There are a total of 4 parameters for the equation for increase in length and weight. These are
declared in a single vector, as shown below:

growthparameters <linf> <kappa> <alpha> <beta>

It is important to note that if the value of L∞ is less than the mean length of a length group, then
the length increase calculated by equation ?? would be negative for that length group, which will
result in Gadget printing a warning message. To avoid this, the user should ensure that the value
of L∞ is always greater than the mean length of the largest length group.

4.4 Growth Implementation

The growth functions described above calculate the mean growth for the stock within the model.
This must then be translated into a statistical distribution of actual growths around that mean.
Currently there is only one statistical distribution implemented with Gadget, the beta-binomial,
which is described below.

Note that regardless of the results of the implementation function there is a minimum width
to the possible distribution implemented in Gadget - where growth is allocated between two
adjacent length categories. This is a result of the discretisation within Gadget. To avoid this the
user should select a length category size small enough for some fish to grow by at least 3 or 4
categories in one time step.

4.4.1 Beta-Binomial

This method uses a statistical distribution to govern the implementation of fish growth. The
statistical distribution chosen is the beta-binomial, an extension of the binomial distribution with
the flexibility to produce non-symmetrical distributions, which is defined for integers, x = 0, . . . ,
n as: (

n

x

)
px(1− p)n−x =

Γ(n+ 1)

Γ(x+ 1)Γ(n− x+ 1)
px(1− p)n−x (4.16)

For more flexibility, this can be re-arranged by calculating the parameter <p> from a second
beta-binomial distribution, leading to equation ?? shown below, which is defined for 0 ≤ p ≤ 1:

f(p) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (4.17)

α =
β∆L

n−∆L
(4.18)

20

4 Stock Files

The distribution is governed by three parameters; the mean length growth computed by the
growth function scaled by dividing by the width of the length groups (< ∆L >), a fixed limit on
the number of length groups (< n >), and a value for beta. This distribution was chosen because
it provides a high degree of flexibility resulting from changing a single estimated parameter, beta.
To define the distribution data using a beta-binomial distribution the following data is required
in the main stock file:

beta <beta>
maxlengthgroupgrowth <max length group growth>

The parameter <beta> is the parameter that Gadget can estimate in the optimisation routines, in
order to tune the distribution to best fit the data. High values of beta produce a narrow distri-
bution, whilst lower values produce a more dispersed distribution with a larger right-hand tail.
Note that very low values of beta (which lead to α < 1 in equation ??) can lead to unexpected
results and should be avoided.

The <max length group growth> value is the maximum number of length categories a fish is
permitted to grow in a single timestep within the model. This should be set to be several length
groups larger than any fish can be reasonably expected to grow in a time step, in order to pro-
vide the beta-binomial distribution with sufficient flexibility to produce a distribution around the
mean.

4.5 Natural Mortality

The natural mortality is a measure of how much of the stock will be removed from the model
due to additional natural causes that are not modelled as part of other processes (for example
predation). In Gadget, this is simply modelled as the proportion of the stock that is removed
due to these additional causes (the residual mortality) from each age group, on each timestep, as
shown in equation ?? below:

Na = e−ma∆t (4.19)

where:
< ∆t > is the length of the timestep

The natural mortality parameters < ma > are specified in the stock file as a vector, with one
parameter per age group, as shown below:

naturalmortality <natural mortality vector>

4.6 Stock Prey

The stock prey section of the stock file determines if, and how, the stock will be treated as a prey
in the Gadget model. The format for the first part of the prey section of the main stock file is
given below:

iseaten <0 or 1> ; 0 for not eaten, 1 for eaten

Note that the fleets are treated as a predator by Gadget, so for the stock to be caught by the
fleets, the stock needs to be declared as a prey. If the stock is not eaten, then the following section
doesn’t apply, and the next section of the input file is the stock predator, given in section ?? below.
If the stock is eaten, then for Gadget to treat it as a prey the length groups for that prey, and the
energy content of the prey, must be defined. The length groups need not be to the same scale as
for the stock as a whole. This is done by listing a length aggregation file that is to be used, as well
as the energy content (in kilojoules per kilogram), as shown for the full example below:

21

4 Stock Files

iseaten 1
preylengths <length aggregation file>
energycontent <energy value>

4.7 Stock Predator

The stock predator section of the stock file determines if, and how, the stock will be treated as a
predator in the Gadget model. The format for the first part of the predator section is given below:

doeseat <0 or 1> ; 0 for not a predator, 1 for predator

If the stock is not a predator, then the following sections don’t apply, and the next section of the
input file is the initial conditions, given in section ?? below. If the stock is a predator, then it
is necessary to specify information about the predation. This is done by defining a suitability
function, and then some prey preference, consumption and feeding parameters. The full format
for this is shown below:

doeseat 1
suitability <see Suitability>
preference <prey preference values>
maxconsumption <maximum consumption vector>
halffeedingvalue <half feeding value>

The <suitability> defines the prey that the predator will consume, and is discussed in the Suit-
ability section below (see section ??). The <prey preference> values, <maximum consumption>
vector and <half feeding> value parameters define how the stock consumes any prey that is
eaten, and are described in the following section.

4.8 Consumption

The consumption determines how much of a given prey is consumed by the predator. This will
result in the population of the prey being reduced, and can also affect the growth of the predator,
depending on the growth function selected. The consumption of a prey is dependant on the
length of both the predator and the prey, and the amount of the prey available, as a proportion of
the total amount of food available. The consumption of prey p is given by equation ?? below:

Cp(l, L) =
NLMLψLFp(l, L)∑

preys

Fp(l, L)
(4.20)

Fp(l, L) =
(
Sp(l, L)EpNlWl

)dp
(4.21)

ML = m0∆te(m1T−m2T
3)Lm3 (4.22)

ψL =

∑
preys

Fp(l, L)

H∆t+
∑

preys

Fp(l, L)
(4.23)

where:
< L > is the length of the predator
< l > is the length of the prey
< H > is the half feeding value

22

4 Stock Files

< d > is the preference of the predator for the prey
< E > is the energy content of the prey (see section ??)
< N > is the number of prey in the length cell
< W > is the mean weight of the prey in the length cell
< S > is the suitability function (see section ??)
< ∆t > is the length of the timestep
< T > is the temperature of the area that the feeding takes place on

In equation ??, the parameter < F > gives the amount of a given prey that is consumed by the
predator, given by multiplying the biomass of the prey by the suitability (see section ??), as shown
in equation ??. The summation over preys is over all preys that the predator consumes, including
non-modelled prey, given as ”otherfood” in section ??. The value of < C > can have an affect on
the growth of the predator when the growth function has been set to ”WeightJones”.

In equation ??, the parameter < d > gives the preference of the predator for the prey, controlling
the form of the functional response that is used to model the predation. Setting this parameter
to 1 will ensure that a Type II functional response is used (note that this is always used when
modelling the predation by the fleets, see section ??). Any other value will mean that a Type III
functional response is used. The prey preference parameter is specified by listing the names of
the prey and the associated preference value, as shown in the example below:

...
preference
<name of prey 1> <preference for prey 1>
<name of prey 2> <preference for prey 2>
maxconsumption <maximum consumption vector>
...

In equation ??, the parameter < M > gives the maximum possible consumption for the predator
on the current timestep. This is a function of temperature and the length of the predator, using
the 4 parameters specified by the <maximum consumption> vector in the input file. Note that
the maximum consumption should be specified in kilojoules per month.

In equation ??, the parameter < ψ > gives the ”feeding level” which denotes the fraction of
the available food that the predator is consuming. This is governed by the total amount of prey
available and the <half feeding> value which is specified in the input file. The <half feeding>
value is the biomass of prey required to allow the predator to consume prey at half the maximum
consumption level. The value of< ψ > can have an affect on the growth of the predator (ie. when
there isn’t sufficient food available) when the growth function has been set to ”MULTSPEC” or
”WeightJones”.

4.9 Suitability

The suitability determines how the predators act on the preys. This selectivity relationship be-
tween the predator and the prey is based on the lengths of the predator and prey, and are defined
by declaring a suitability function and the parameters for that function. The suitability values
can be thought of as the proportion of the prey length group that the predator length group can
consume, and as such the suitability values should be between 0 and 1.

To define a suitability relationship based on a suitability function, the stock file (for the predator)
needs to contain the following data:

suitability
<preyname> function <functionname> <parameters> ; for each prey

23

4 Stock Files

The <functionname> defines which suitability function is to be used to calculate the suitability
for the predator acting on the prey. Currently there are 7 suitability functions defined, and the
valid suitability function names are:

constant - use the Constant suitabilty function
straightline - use the StraightLine suitabilty function
exponential - use the Exponential suitabilty function
exponentiall50 - use the ExponentialL50 suitabilty function
richards - use the Richards suitabilty function
andersen - use the Andersen suitabilty function
gamma - use the Gamma suitabilty function

For the following suitability functions, the convention used is to represent the length group of
the prey by l, and the length group of the predator by L.

4.9.1 Constant Suitability Function

This is a constant suitability function, where there is no dependence on either the length of the
predator or the length of the prey as given by the following equation:

S(l, L) = α (4.24)

Hence, to specify a constant suitability function, the file format required is:

<preyname> function constant <alpha>

4.9.2 StraightLine Suitability Function

This is a suitability function that has no dependence on the length of the predator, and a linear
dependence on the length of the prey as given by the following equation:

S(l, L) = αl + β (4.25)

Hence, to specify a straight line suitability function, the file format required is:

<preyname> function straightline <alpha> <beta>

4.9.3 Exponential Suitability Function

This is a suitability function that has a logarithmic dependence on both the length of the predator
and the length of the prey as given by the following equation:

S(l, L) =
δ

1 + e(−α−βl−γL)
(4.26)

Hence, to specify this suitability function, the file format required is:

<preyname> function exponential <alpha> <beta> <gamma> <delta>

24

4 Stock Files

4.9.4 ExponentialL50 Suitability Function

This is a suitability function that has no dependence on the length of the predator, and a logarith-
mic dependence on the length of the prey as given by the following equation:

S(l, L) =
1

1 + e−4α(l−l50)
(4.27)

Note that the prey length dependence is actually dependant on the difference between the length
of the prey and l50, which is the length of the prey with a 50% probability of predation. Hence, to
specify this suitability function, the file format required is:

<preyname> function exponentiall50 <alpha> <l50>

4.9.5 Richards Suitability Function

This is a suitability function that is an extension to the Exponential suitiability function, and has
a logarithmic dependence on both the length of the predator and the length of the prey as given
by the following equation:

S(l, L) =

(
p3

1 + e(−p0−p1l−p2L)

) 1
p4

(4.28)

Hence, to specify this suitability function, the file format required is:

<preyname> function richards <vector of 5 parameters>

4.9.6 Andersen Suitability Function

This is a more general suitability function that is dependant on the ratio of the predator length to
the prey length as given by the following equation:

S(l, L) =

p0 + p2e
−

(ln L
l
−p1)2

p4 if ln L
l ≤ p1

p0 + p2e
−

(ln L
l
−p1)2

p3 if ln L
l > p1

(4.29)

Note that the log of the ratio of the predator/prey lengths is bounded, to ensure that the suitabil-
ity function is always well defined. To specify this suitability function, the file format required
is:

<preyname> function andersen <vector of 5 parameters>

4.9.7 Gamma Suitability Function

This is a suitability function that is only dependant on the prey length as given by the following
equation:

S(l, L) =

(
l

(α− 1)βγ

)(α−1)

e(α−1− l
βγ) (4.30)

Hence, to specify this suitability function, the file format required is:

<preyname> function gamma <alpha> <beta> <gamma>

This is a suitability function that is more suitable for use when considering the predation by a
fleet (see section ??), where the parameter < γ > would represent the size of the mesh used by
the fleet (specified in centimetres).

25

4 Stock Files

4.10 Initial Conditions

The initial conditions section of stock file specifies the stock population at the start of the simu-
lation (ie. at the beginning of the first timestep specified in the ”time” file). This includes setting
up the population size, the length distribution and the mean weight for each length group. This
is done by specifying the minimum and maximum age and length for the stock on this timestep,
and either specifying parameters to allow Gadget to create a stock distribution based on a Normal
distribution, or the numbers that make up the stock distribution required.

The format for the initial conditions section of the stock file is given below:

initialconditions
minage <minimum age for the initial stock>
maxage <maximum age for the initial stock>
minlength <minimum length for the initial stock>
maxlength <maximum length for the initial stock>
dl <step size for the initial length groups>
sdev <standard deviation multiplier>
<initial stock distribution data>

The optional <sdev> value is used to scale the standard deviation of the length of the initial
stock. The standard deviation used in calculating the length distribution will be multiplied by
this value. If it is not specified, then it is assumed to have a value of 1 (ie, no scaling will take
place). The optional <dl> value is used to set the length group divisions for the initial stock
population. If this is not specified, then it is assumed that the initial population will have the
same value for <dl> as for the stock, as specified in the main stock file.

There are three formats for the initial stock distribution data, as given below:

Normal Condition - use a Normal function to generate the length distribution, with a relative
condition factor to assign a mean weight to the initial population
Normal Parametric - use a Normal function to generate the length distribution, with a parametric
weight-length relationship to calculate a mean weight for the initial population
Numerical - specify the numbers, and the corresponding mean weights, for the initial population

4.10.1 Normal Condition Distribution

To specify an initial stock with the lengths given by a Normal distribution, and using a relative
condition factor to generate the weights, the main stock file needs to specify the name of a datafile
containing the information about the Normal distribution, as shown below:

normalcondfile <name of the initial stock data file>

The initial stock file contains all the information that Gadget requires to construct an initial popu-
lation of the stock. Gadget will construct a population of 10,000 fish for each age group, with the
length groups for these age groups having a Normal distribution about a specified mean length
with a specified standard deviation. The mean weight for this initial population is calculated
by multiplying the reference weight (specified in the main stock file) by a relative conditioning
factor (which is typically set to 1).

To get from a population with 10,000 fish in each age group (for each area) to the initial population
used in the model, each age group is multiplied by an age weighting factor and an area weighting
factor.

Hence, the format for the initial stock file is given below:

<age> <area> <age factor> <area factor> <mean> <stddev> <relcond>

26

4 Stock Files

4.10.2 Normal Parametric Distribution

To specify an initial stock with the lengths given by a Normal distribution, and using a weight-
length relationship to generate the weights, the main stock file needs to specify the name of a
datafile containing the information about the Normal distribution, as shown below:

normalparamfile <name of the initial stock data file>

The initial stock file contains all the information that Gadget requires to construct an initial popu-
lation of the stock. Gadget will construct a population of 10,000 fish for each age group, with the
length groups for these age groups having a Normal distribution about a specified mean length
with a specified standard deviation. The mean weight for this initial population is then calculated
from the standard weight-length relationship, as given in equation ?? below:

W = αLβ (4.31)

To get from a population with 10,000 fish in each age group (for each area) to the initial population
used in the model, each age group is multiplied by an age weighting factor and an area weighting
factor.

Hence, the format for the initial stock file is given below:

<age> <area> <age factor> <area factor> <mean> <stddev> <alpha> <beta>

4.10.3 Numerical Distribution

An alternative approach is to define the initial stock population by specifying an age-length table,
along with the mean weight, for the initial stock. This approach requires the main stock file to
specify a data file to give the age-length table, as shown below:

numberfile <name of the initial stock data file>

The initial stock file contains the age-length table for the initial population. This file specifies the
population, and mean weight, of the stock for each area, age group and length group combina-
tion, as shown below:

<area> <age> <length> <number> <weight>

Note that the <length> value refers to the minimum length of the age-length cell that the initial
population will be put into.

4.11 Migration

The migration section of the stock file determines if, and how, the stock will migrate in the Gadget
model. The migration of a stock within a Gadget model is calculated based on migration matrices.
The format for the first part of the migration section is given below:

doesmigrate <0 or 1> ; 0 for no migration, 1 for migration

If the stock does not migrate, then the following section doesn’t apply, and the next section of
the input file is the maturation, given in section ?? below. If the stock does migrate, then further
information about the migration is required. There are currently 2 formats for the migration data,
as given in the list below:

Migration Matrices - specify the migration matrices to be used
Migration Ratios - specify the ratio of the stock that moves between areas, and let Gadget calcu-
late the required matrices based on these ratios

27

4 Stock Files

4.11.1 Migration Matrices

To specify the migration of the stock by defining the migration matrices directly, the main stock
file needs to specify the name of a datafile containing information about when the migration will
take place, and the name of a datafile containing information about the migration matrices, as
shown below:

doesmigrate 1
yearstepfile <name of the migration timestep data file>
definematrices <name of the migration matrix data file>

The migration timestep file contains a simple list of the timesteps that the migration will take
place on, along with the name of the migration matrix that is to be used on each timestep, as
shown below:

<year> <step> <migration matrix>

The migration matrix file contains the migration matrices to be used to move the stock between
the various areas within the Gadget model. Each matrix is listed, starting with the keyword
[migrationmatrix], followed by the name of the migration matrix, and then the matrix to be used,
as shown below:

[migrationmatrix]
name <migration matrix>
<migration matrix data>

The <migration matrix> data should be a square n x n matrix, for the n areas that the stock is
defined on, with the proportion moving from each area given in the columns, and the proportion
moving to each area given in the rows. Since migration shouldn’t change the total number of fish
in the model, each column in the matrix should sum to one.

An example of a migration matrix data for a stock that is defined on two areas is given below:

[migrationmatrix]
name example
0.6 0.3
0.4 0.7

For the migration of the stock in the example shown above, 60% of the stock that are on area 1 at
the start of the migration will move to area 1 (ie. they will stay there) and the remaining 40% will
move to area 2. For the stock that start the timestep on area 2, 30% will move to area 1 and the
remaining 70% will stay on area 2.

4.11.2 Migration Ratios

An alternative approach is to specify the migration of the stock by defining the ratio of the stock
that will migrate between given areas, and let Gadget calculate the resulting migration matrices
to use within the model. To use this format for the migration data, the main stock file needs to
specify the name of a datafile containing information about when the migration will take place,
and the name of a datafile containing information about the migration ratios, as shown below:

doesmigrate 1
yearstepfile <name of the migration timestep data file>
defineratios <name of the migration ratio data file>

28

4 Stock Files

The migration timestep file contains a list of the timesteps that the migration will take place on,
along with the name of the migration matrix that is to be used on each timestep, in the same
format as for the Migration Matrices, as shown above.

The migration ratio file contains the ratios to be used by Gadget to construct the migration matri-
ces to move the stock between the various areas within the Gadget model. Each matrix is listed,
starting with the keyword [migrationmatrix], followed by the name of the migration matrix, and
then a list of the ratios to be used to construct the matrix, as shown below:

[migrationmatrix]
name <migration matrix>
<from> <to> <ratio>

The migration ratio data is a list of the ratio of the stock that moves from the <from> area to the
<to> area. Gadget will attempt to construct the migration matrix based on these ratios. Where
the data is incomplete, Gadget will assume that there is no migration between areas (ie. fish will
stay on the area that they are on at the start of the timestep). If Gadget cannot construct a (unique)
migration matrix, then the model will stop the current simulation and display an error message.

An example of a migration ratio data for a stock that is defined on two areas is given below:

[migrationmatrix]
name example
1 2 0.4
2 1 0.3

For the migration of the stock in the example shown above, 40% of the stock that are on area 1 at
the start of the migration will move to area 2, and the remaining 60% will stay on area 1. For the
stock that start the timestep on area 2, 30% will move to area 1 and the remaining 70% will stay
on area 2.

4.12 Maturation

The maturation section of the stock file determines if, and how, the stock will mature in the
Gadget model. The format for the first part of the maturation section is given below:

doesmature <0 or 1> ; 0 for no maturation, 1 for maturation

If the stock does not mature, then the following sections don’t apply, and the next section of
the input file is the movement, given in section ?? below. If the stock does mature, then there are
various different functions that describe how the stock can mature. The type of maturity function
is denoted by a name, as shown below, and then the data required for that maturity function is
given in a datafile. Thus the format for the maturity data, in the main stock file, is given below:

doesmature 1
maturityfunction <maturity function>
maturityfile <name of the maturity data file>

The <maturity function> defines the function that is to be used to calculate how the stock will
mature. Currently there are 4 maturity functions defined, and the valid maturity function names
are:

continuous - use the Continuous maturation function
constant - use the Constant maturation function
constantweight - use the ConstantWeight maturation function
fixedlength - use the FixedLength maturation function

29

4 Stock Files

The format for the data in the maturity data file is dependent on the maturity function that is
to be used. All the maturity functions require the name of the mature stocks that the immature
stock will mature into, and the ratio of the maturing part of the immature stock that is to mature
into each mature stock. This allows for part of an immature stock to mature into more than one
mature stock, so for example, an immature stock could mature into either a male mature stock or
a female mature stock.

The maturity functions calculate the proportion of the fish in each age-length group that will
become mature, and then move these fish from the age-length group for the current stock into
the corresponding age-length group for the mature stock. Note that there is a check to ensure
that the corresponding age-length group exists for the mature stock, and if it doesn’t then the fish
don’t become mature and will stay in the immature stock.

4.12.1 Continuous Maturity Function

This maturity function calculates the proportion of an age-length group of an immature stock
that becomes mature according to the maturity equations ?? and ?? given below:

P (l, a) =
1

1−M
dM

dt
(4.32)

M(lt, at) =
1

1 + e−α(lt−l50)−β(at−a50)
(4.33)

The maturity term is a function of l50 and a50, which are the length and age where 50% of the
stock are mature. This is a continuous process, with the maturity proportion being calculated on
every timestep. The file format for this maturity function is given below:

maturestocksandratios <stockname i> <ratio i> ; for each stock i
coefficients <alpha> <l50> <beta> <a50>

4.12.2 Constant Maturity Function

This maturity function is similar to the Continuous maturity function, with the maturity propor-
tion being calculated according to the maturity equation ?? given below:

P (l, a) =
1

1 + e−4α(l−l50)−4β(a−a50)
(4.34)

For this maturation function, it is assumed that maturation is an annual event, taking place on
the same timesteps in each year. The file format for this maturity function is the similar to that
for the Continuous maturity function, and is shown below:

maturestocksandratios <stockname i> <ratio i> ; for each stock i
coefficients <alpha> <l50> <beta> <a50>
maturitysteps <vector of timesteps>

The <maturitysteps> vector is a vector of timesteps that the maturation process will take place
on.

30

4 Stock Files

4.12.3 ConstantWeight Maturity Function

This maturity function is an extension to the Constant maturity function, with the maturity pro-
portion being calculated according to the maturity equation ?? given below:

P (l, a) =
1

1 + e−4α(l−l50)−4β(a−a50)−4γ(k−k50)
(4.35)

The maturity function has been extended to include the relative condition of the stock (calculated
by dividing the current weight by the reference weight) and k50 which is the relative condition
where 50% of the stock is mature. The file format for this maturity function is the similar to that
for the Constant maturity function, and is shown below:

maturestocksandratios <stockname i> <ratio i> ; for each stock i
coefficients <alpha> <l50> <beta> <a50> <gamma> <k50>
maturitysteps <vector of timesteps>

4.12.4 FixedLength Maturity Function

This maturity function takes a different approach, and bases the proportion of the immature stock
that matures on the length of the immature stock, as the length varies through the year. This is
approach assumes that the maturation process is the same for each year. The proportion of the
immature stock that matures is given by the equation ?? below:

P (l, a) =

{
1 if there is an i such that si is the current step and l > li

0 otherwise
(4.36)

For each timestep in the year, the stock is assumed to mature when the length of the fish reaches
a certain value. This length can change for each timestep. This information is given in a file with
the format specified below:

maturestocksandratios <stockname i> <ratio i> ; for each stock i
maturitysteps <vector of timesteps>
maturitylengths <vector of lengths>

Note that the <maturitysteps> and the <maturitylengths> vectors need to be the same size.

4.13 Movement (”Transition”)

The movement section of the stock file determines if, and how, the stock will move (into a differ-
ent stock) in the Gadget model. This allows for a Gadget model to be set up with different stock
files for stock that is the same species, but with differing properties (for instance age or maturity
status) and for the entries to move between these stocks when required. For the current version
of Gadget, the only movement between stocks that is valid is for the stock in the oldest age group
of one stock to move into a different stock. The format for the first part of the movement section
is given below:

doesmove <0 or 1> ; 0 for no movement, 1 for movement

If the stock does not move, then the following section doesn’t apply, and the next section of the
input file is the renewal, given in section ?? below. If the stock does move, then the information
required to define the movement is the timestep for the movement to occur (since the movement
is assumed to be an annual event) and the names of the stocks to move the oldest age group into,
along with the ratio of the oldest age group that will move into that particular stock. Thus the
full format for the movement of the stock is given below:

31

4 Stock Files

doesmove 1
transitionstocksandratios <stockname i> <ratio i> ; for each stock i
transitionstep <timestep for the stock to move>

The movement function simples move the fish from the oldest age-length groups for the current
stock into the corresponding age-length group for the stock that the fish will move into (in a
similar manner to that used for the maturation, given in section ??). Note that there is a check to
ensure that the corresponding age-length group exists, and if it doesn’t then the fish don’t move
and will stay in the oldest age group for current stock, which is modelled as a plus group.

4.14 Renewal (”Recruitment”)

The renewal section of the stock file determines if, and how, the stock will be renewed in the
Gadget model. The format for the first part of the renewal section is given below:

doesrenew <0 or 1> ; 0 for no renewal, 1 for renewal

If the stock does not renew, then the following sections don’t apply, and the next section of the
input file is the spawning, given in section ?? below. If the stock does renew, then further infor-
mation is required about the renewal data. This is given in a separate file, so the format for the
renewal data, in the main stock file, is given below:

doesrenew 1
minlength <minimum length for the recruits>
maxlength <maximum length for the recruits>
dl <step size for the recruits>
<renewal distribution data>

The <dl> value is optional, and can be used to specify a different step size for the recruits than
for the stock that the recruits will be added to. If this value is not specified here then the recruits
will be given the same step length as for the stock they will be added to.

In a similar manner to the format for the initial population (see section ??) there are three formats
for the renewal distribution data, as given below:

Normal Condition - use a Normal function to generate the length distribution, with a relative
condition factor to assign a mean weight to the new recruits
Normal Parametric - use a Normal function to generate the length distribution, with a parametric
weight-length relationship to calculate a mean weight for the new recruits
Numerical - specify the numbers, and the corresponding mean weights, for the new recruits

4.14.1 Normal Condition Distribution

To specify renewal data with the lengths given by a Normal distribution, and using a relative
condition factor to generate the weights, the main stock file needs to specify the name of a datafile
containing the information about the Normal distribution, as shown below:

normalcondfile <name of the renewal data file>

The renewal file contains all the information that Gadget requires to construct the renewal data
for the stock. For each timestep and area, this file lists the the age of the recruits (which would
typically match the minimum age of the stock that the recruits are to be added to), the number
of recruits (in units of 10,000 fish), parameters used to define the Normal distribution for length
groups of the recruits, and the relative condition factor, used along with the reference weight to
assign a mean weight for the recruits.

Hence, the format for the renewal file is given below:

<year> <step> <area> <age> <number> <mean> <stddev> <relcond>

32

4 Stock Files

4.14.2 Normal Parametric Distribution

To specify renewal data with the lengths given by a Normal distribution, and using a weight-
length relationship to generate the weights, the main stock file needs to specify the name of a
datafile containing the information about the Normal distribution, as shown below:

normalparamfile <name of the renewal data file>

The renewal file contains all the information that Gadget requires to construct the renewal data
for the stock. For each timestep and area, this file lists the the age of the recruits (which would
typically match the minimum age of the stock that the recruits are to be added to), the number
of recruits (in units of 10,000 fish), parameters used to define the Normal distribution for length
groups of the recruits, and parameters to define the weight-length relationship for these recruits.

Hence, the format for the renewal file is given below:

<year> <step> <area> <age> <number> <mean> <stddev> <alpha> <beta>

4.14.3 Numerical Distribution

An alternative approach is to define the renewal data by specifying an age-length table, along
with the mean weight, for each timestep that will have new fish added to the stock. This approach
requires the main stock file to specify a data file to give the age-length table, as shown below:

numberfile <name of the renewal data file>

The renewal file contains data for an age-length table for each timestep that will have new fish
added to the stock. This file specifies the number, and mean weight, of the new fish for each
timestep, area, age group and length group combination, as shown below:

<year> <step> <area> <age> <length> <number> <weight>

Note that the <length> value refers to the minimum length of the age-length cell that the new
fish will be put into.

4.15 Spawning

The spawning section of the stock file determines if, and how, the stock will spawn in the Gadget
model. This covers the mortality and weight loss from the stock due to the spawning process,
and optionally the creation of a new spawned stock. The format for the first part of the spawning
section is given below:

doesspawn <0 or 1> ; 0 for no spawning, 1 for spawning

If the stock does not spawn, then the following sections don’t apply, and the next section of the
input file is the straying information, given in section ?? below. If the stock does spawn, then
further information is required about the spawning data. This is given in a separate file, so the
format for the spawning data, in the main stock file, is given below:

doesspawn 1
spawnfile <name of the spawning data file>

The spawning data file defines what happens to the stock as it spawns. The spawning is length-
dependent, and the affect that spawning has on each length group of the mature stock is given
by the spawning equations ?? and ?? below:

33

4 Stock Files

N = N
(
1 + P (e−m − 1)

)
(4.37)

W = W
(1 + P ((2− w)e−m − 1))

(1 + P (2e−m − 1))
(4.38)

where:
< N > is the population of the age-length group
< W > is the mean weight of the population of the age-length group
< P > is the proportion of the length group that will spawn
< m > is the spawning mortality for that length group
< w > is the spawning weight loss for that length group

In equation ??, the population of the age-length cell of the mature stock is reduced due to the
spawning mortality of the fish that spawn. In equation ??, the mean weight of the population
in the age-length cell is adjusted to take the reduction in weight of the fish that spawn, and the
change in population, into account.

Spawning is considered to be an annual event, that takes place on the same timestep and the
same area in each year that the spawning occurs. To model the spawning process as it affects
the parent (without the creation of a child stock), it is necessary to specify the timestep and area
that the spawning will take place on, and the length selection functions to determine proportion
of each length group that will spawn, and the spawning mortality and weight loss of those that
spawn. This is done in the spawning data file, as shown below:

spawnsteps <vector of timesteps>
spawnareas <vector of areas>
firstspawnyear <first year that the spawning occurs>
lastspawnyear <last year that the spawning occurs>
onlyparent
proportionfunction <see Length Selection>
mortalityfunction <see Length Selection>
weightlossfunction <see Length Selection>

The optional <firstspawnyear> and <lastspawnyear> values define the first and last years on
which the spawning process will take place. This means that it is possible to define recruits (see
section ?? above) for some years in the model and use a spawning process in other years in the
model. If these are not specified in the input file, then it assumed that the spawning process will
take place on all years in the simulation, and these will default to the first year and last year in
the simulation.

Alternatively, it is possible to consider the spawning process as part of a through life-cycle model,
and so the spawning process can create recruits to be added to one or more stocks (in a similar
manner to the renewal data, given in section ?? above). The total number of recruits given by
the spawning process is added to the youngest age group of the spawned stock at the start of the
following timestep. The lengths of the spawned stock are distributed with a Normal distribution
about a specified mean length <mean> with a standard deviation <stddev>. The mean weight
of the fish in these age length cells is given from equation ??, with α and β specified in the
spawning data file. Hence, if the spawning process is to calculate a number of recruits to the
model, the format for the spawning data file is shown below:

spawnsteps <vector of timesteps>
spawnareas <vector of areas>
firstspawnyear <first year that the spawning occurs>
lastspawnyear <last year that the spawning occurs>
spawnstocksandratios <stockname i> <ratio i> ; for each stock i

34

4 Stock Files

proportionfunction <see Length Selection>
mortalityfunction <see Length Selection>
weightlossfunction <see Length Selection>
recruitment <functionname> <parameters>
stockparameters <mean> <stddev> <alpha> <beta>

The recruitment <functionname> defines which recruitment function to use to calculate the
number of recruits to be added to the spawned stock. Currently there are 4 recruitment func-
tions defined, and the valid recruitment function names are:

fecundity - use the Fecundity recruitment function
simplessb - use the SimpleSSB recruitment function
ricker - use the Ricker recruitment function
bevertonholt - use the BevertonHolt recruitment function

4.15.1 Fecundity Recruitment Function

This recruitment function calculates the number of recruits to be added to the spawned stock as
a function of the length, age, number and weight of the spawning stock, given by the following
equation:

R = p0

∑
ages

∑
lengths

lp1ap2Np3
alW

p4
al (4.39)

Hence, to specify this recruitment function, the file format required is:

recruitment fecundity <vector of 5 parameters>

4.15.2 SimpleSSB Recruitment Function

This recruitment function calculates the number of recruits to be added to the spawned stock as
a simple proportion of the spawning stock biomass, given by the following equations:

S =
∑
ages

∑
lengths

NalWal (4.40)

R = µS (4.41)

Hence, to specify this recruitment function, the file format required is:

recruitment simplessb <mu>

4.15.3 Ricker Recruitment Function

This recruitment function calculates the number of recruits to be added to the spawned stock,
as a function of the spawning stock biomass (see equation ??), based on the Ricker recruitment
relationship given by the following equation:

R = µSe−λS (4.42)

Hence, to specify this recruitment function, the file format required is:

recruitment ricker <mu> <lambda>

35

4 Stock Files

4.15.4 BevertonHolt Recruitment Function

This recruitment function calculates the number of recruits to be added to the spawned stock, as a
function of the spawning stock biomass (see equation ??), based on the Beverton Holt recruitment
relationship given by the following equation:

R =
µS

λ+ S
(4.43)

Hence, to specify this recruitment function, the file format required is:

recruitment bevertonholt <mu> <lambda>

4.16 Length Selection

The length selection function determines the proportion of the length group that will be selected,
in a similar way to the suitability functions (see section ?? above). To define a length selection
function, it is necessary to specify the function, the name of the function ans the parameters for
the function, as shown below:

<function> <functionname> <parameters>

The <function> defines how the length selection function will be used (for an example, see sec-
tion ?? above). The <functionname> defines which selection function is to be used to calculate
the selection of the stock. Currently there are three selection functions defined, and the valid
length selection function names are:

constant - use the Constant selection function
straightline - use the StraightLine selection function
exponential - use the Exponential selection function

4.16.1 Constant Selection Function

This is a selection function, where there is no dependence on the length of the stock is given by
the following equation:

S(l) = α (4.44)

Hence, to specify a constant selection function, the file format required is:

<function> constant <alpha>

4.16.2 StraightLine Selection Function

This is a selection function that has a linear dependence on the length of the stock is given by the
following equation:

S(l) = αl + β (4.45)

Hence, to specify a straight line selection function, the file format required is:

<function> straightline <alpha> <beta>

36

4 Stock Files

4.16.3 Exponential Selection Function

This is a selection function that has a logarithmic dependence on the length of the stock is given
by the following equation:

S(l) =
1

1 + eα(l−l50)
(4.46)

Note that the stock length dependence is actually dependant on the difference between the length
of the stock and l50, which is the length of the stock with a 50% probability of selection. Hence,
to specify this selection function, the file format required is:

<function> exponential <alpha> <l50>

4.17 Straying

The straying section of the stock file determines if, and how, the stock will stray from one substock
to another substock in the Gadget model. The format for the first part of the straying section of
the stock file is given below:

doesstray <0 or 1> ; 0 for no straying, 1 for straying

If the stock does not stray, then the following section doesn’t apply, and the stock file is complete.
If the stock does stray, then further information is required about the straying data. This is given
in a separate file, so the format for the straying data, in the main stock file, is given below:

doesstray 1
strayfile <name of the straying data file>

The straying data file defines what happens to the stock as it strays from one substock to another.
The straying is length-dependent, so that a proportion of each length group (over all age groups)
will move to the corresponding length group in a different substock. This process can be thought
of as an extension to the transition process (see section ??).

Straying is considered to be an annual event, that takes place on the same timestep and the same
area in each year. To model the straying process in Gadget, it is necessary to specify the timestep
and the area that the straying will take place on, the the names of the stocks to move the straying
fish into, along with the ratio of the fish that will move into that particular stock (in a similar
manner to that used for the transition process) and the length selection function to determine the
proportion of the length group that will stray. This is done in the straying data file, as shown
below:

straysteps <vector of timesteps>
strayareas <vector of areas>
straystocksandratios <stockname i> <ratio i> ; for each stock i
proportionfunction <see Length Selection>

37

4 Stock Files

38

Chapter 5

Tag Files

The tag files contain the information about the tagging experiments that are to be included in the
Gadget model. Gadget will keep track of the number, and proportion, of fish in an age-length
cell that have been tagged for a tagging experiment. This information can then be compared to
the recaptures from that tagging experiment when calculating a likelihood score (see Recaptures,
section ??).

To define tagged populations in the Gadget model, the ”main” file must contain a list of the data
files that contain the description of the tagging experiments, and the format for this is shown
below:

[tagging]
tagfiles <names of the tag files>

The main tag file lists the tagging experiments, along with basic information about the experi-
ments and the name of the datafile that contains information about the number of fish tagged for
the tagging experiment. The format for this file shown below, with each new tagging experiment
starting with the keyword [component]:

[component]
tagid <name of the tagging experiment>
stock <name of the tagged stock>
tagarea <area that the tagging took place>
endyear <year of last recapture>
tagloss <proportion of tagged fish that are lost>
numbers <see Tagging Numbers>

Each tagging experiment is defined by specifying the name of the tagging experiment, the stock
that is tagged for the tagging experiment, and the area that the tagging took place on. Note that
it is currently possible to only tag one stock, on one area, for each tagging experiment.

The optional <endyear> value is used to define the end of a tagging experiment, and should be
set to the year of the last expected recapture from the tagging experiment. This can be used to
reduce the calculation time. If this is not specified, then it is assumed that the tagging experiment
will run until the end of the simulation.

The<tagloss> value is used to remove tagged fish from the model. For each time step, a number
of tags can be lost from the tagging experiment. The number of tagged fish that remain in the
tagging experiment is given by the equation ?? below:

N = N(e−t) (5.1)

39

5 Tag Files

where:
< N > is the number of tagged fish in an age-length group
< t > is the proportion of tagged fish that are lost, as specified in the input file

5.1 Tagging Numbers

The numbers section of the tag file gives the number of fish tagged for the tagging experiment.
This is given in a column format in a separate file, so the main tag file simply gives the name of
this tag data file, as shown in the example below:

numbers <name of data file>

For the tag datafile, this is a simple list of tag identifier, timestep, length and then the number of
fish tagged, for that tag/timestep/length combination. This format is shown below:

<tagid> <year> <step> <length> <number>

Note that the <length> value refers to the minimum length of the length cell that the tagged fish
will be put into.

40

Chapter 6

Otherfood Files

The otherfood files contain the information about non-dynamic prey that is available for the
predators to consume. The otherfood acts as a prey that is always available, and it is used to avoid
the situation where the non-availability of a prey stock prevents the predators from growing as
expected.

To define otherfood in the Gadget model, the ”main” file must contain a list of the data files that
contain the description of the otherfood, and the format for this is shown below:

[otherfood]
otherfoodfiles <names of the otherfood files>

The main otherfood file lists the otherfood, along with basic information about the food and the
name of the datafile that contains information about the amount of food that is available for the
predators to eat. The format for this file shown below, with each new otherfood starting with the
keyword [component]:

[component]
foodname <food name>
livesonareas <areas>
lengths <min> <max>
energycontent <energy value>
amount <see Food Amounts>

The otherfood is defined by specifying the otherfood name and areas it is available for consump-
tion on and the minimum and maximum length of food (for compatibility with the dynamic stock
predation and printer classes).

6.1 Food Amounts

The amounts section of the otherfood file gives the biomass of otherfood that is available for the
predators to eat. This data is listed in a column format in a separate file, so the main otherfood
file simply gives the name of this otherfood data file, as shown in the example below:

amount <name of data file>

For the otherfood datafile, this is a simple list of year, timestep, area, food name and then the
biomass of the food available for the predators to eat, for that timestep/area combination. This
format is shown below:

<year> <step> <area> <food name> <amount>

41

6 Otherfood Files

42

Chapter 7

Fleet Files

The fleet files contain the information about the fleets that are reducing the population of the
stocks in the Gadget model. The fleets act as a simple predator in the model, with the landings
data treated as the fleets ”consumption” of the stock that is caught.

To define fleets in the Gadget model, the ”main” file must contain a list of the data files that
contain the description of the fleets, and the format for this is shown below:

[fleet]
fleetfiles <names of the fleet files>

There are 5 types of fleets implemented in Gadget, and the main fleet file lists the fleets and their
type, along with information about the fleet and the name of the datafile that contains informa-
tion about the landings. The format for this file shown below, with each new fleet starting with
the keyword [component]:

[component]
<type> <fleetname>
<fleet data>

The fleet data for each fleet type is covered in the sub sections below. The <type> defines the
type of fleet for the <fleetname> fleet, and the 5 valid fleet types that can used in Gadget are:

TotalFleet
NumberFleet
LinearFleet
EffortFleet
QuotaFleet

7.1 TotalFleet

The fleet type used that creates a predator based on the landings data (by biomass) for the fleet is
called ”TotalFleet”. This total amount landed is then split between the various stocks, and length
groups of the stocks, according to equation ?? below:

Cs(l) =
ESs(l)NslWsl∑

stocks

∑
lengths

Ss(l)NslWsl

(7.1)

where:
< E > is the biomass caught by the fleet

43

7 Fleet Files

< N > is the number of stock in the length cell
< W > is the mean weight of the stock in the length cell
< S > is the suitability function (see section ??)

This fleet type is defined by specifying the fleet name and areas it operates on, along with a
suitability function for each stock that the fleet will catch and a data file listing the biomass that
the fleet will catch. The file format for the TotalFleet is given below:

[component]
totalfleet <fleetname>
livesonareas <areas>
multiplicative <multi>
suitability <see Fleet Suitability>
amount <see Fleet Amounts>

The optional <multi> value is a multiplicative constant used to scale the data if required - the
default value for this multiplier is 1 (ie. no scaling).

The fleets act as a predator, so Gadget also requires a suitability function to be defined for the
predation of the stocks in the model. The total amount that has been landed by the fleet is also
required - this is taken from the landings data, based on timestep and area, and is specified in a
separate file.

7.2 NumberFleet

The fleet type used that creates a predator based on the number of the stock landed (not the
biomass) is called ”NumberFleet”. This total number caught is then split between the various
stocks, and length groups of the stocks, according to equation ?? below:

Cs(l) =
ESs(l)Nsl∑

stocks

∑
lengths

Ss(l)Nsl
(7.2)

where:
< E > is the number caught by the fleet
< N > is the number of stock in the length cell
< S > is the suitability function (see section ??)

This fleet type is defined by specifying the fleet name and areas it operates on, along with a
suitability function for each stock that the fleet will catch and a data file listing the numbers that
the fleet will catch. The file format for the NumberFleet is given below:

[component]
numberfleet <fleetname>
livesonareas <areas>
multiplicative <multi>
suitability <see Fleet Suitability>
amount <see Fleet Amounts>

The optional <multi> value is a multiplicative constant used to scale the data if required - the
default value for this multiplier is 1 (ie. no scaling).

The fleets act as a predator, so Gadget also requires a suitability function to be defined for the
predation of the stocks in the model. The total number of fish that has been caught by the fleet is
also required - this is taken from the landings data, based on timestep and area, and is specified
in a separate file.

44

7 Fleet Files

7.3 LinearFleet

The fleet type used that creates a predator that removes the caught fish based on the available
biomass of the stock multiplied by a scaling factor is called ”LinearFleet”. The biomass caught is
then split between the various stocks, and length groups of the stocks, according to equation ??
below:

Cs(l) = E∆tSs(l)NslWsl (7.3)

where:
< E > is the scaling factor for the stock that is to be caught, per month
< ∆t > is the length of the timestep
< N > is the number of stock in the length cell
< W > is the mean weight of the stock in the length cell
< S > is the suitability function (see section ??)

This fleet type is defined by specifying the fleet name and areas it operates on, along with a
suitability function for each stock that the fleet will catch and a data file listing the fishing level
for the fleet. The file format for the LinearFleet is given below:

[component]
linearfleet <fleetname>
livesonareas <areas>
multiplicative <multi>
suitability <see Fleet Suitability>
amount <see Fleet Amounts>

The optional <multi> value is a multiplicative constant used to scale the data if required - the
default value for this multiplier is 1 (ie. no scaling).

The fleets act as a predator, so Gadget also requires a suitability function to be defined for the
predation of the stocks in the model. The scaling factor to be used when calculating the amount
that the fleet will catch is also required, and this is specified in a separate file.

The fleet of type LinearFleet acts a simple predator, and can be used for fleets acting in the future,
when the landings data is not available.

7.4 EffortFleet

The fleet type used that creates a predator that removes the caught fish based on the available
biomass of the stock multiplied by a scaling factor and a ’catchability’ parameter for that stock
is called ”EffortFleet”. The biomass caught is then split between the various stocks, and length
groups of the stocks, according to equation ?? below:

Cs(l) = Eqs∆tSs(l)NslWsl (7.4)

where:
< E > is the scaling factor for the stock that is to be caught, per month
< q > is the catchability parameter for that stock
< ∆t > is the length of the timestep
< N > is the number of stock in the length cell
< W > is the mean weight of the stock in the length cell
< S > is the suitability function (see section ??)

This fleet type is defined by specifying the fleet name and areas it operates on, along with a
suitability function and catchability parameter for each stock that the fleet will catch and a data

45

7 Fleet Files

file listing the proportion of each stock that the fleet will catch. The file format for the EffortFleet
is given below:

[component]
effortfleet <fleetname>
livesonareas <areas>
multiplicative <multi>
suitability <see Fleet Suitability>
catchability <stock catchability parameters>
amount <see Fleet Amounts>

The optional <multi> value is a multiplicative constant used to scale the data if required - the
default value for this multiplier is 1 (ie. no scaling).

The fleets act as a predator, so Gadget also requires a suitability function to be defined for the
predation of the stocks in the model. The scaling factor to be used when calculating the amount
that the fleet will catch is also required, and this is specified in a separate file.

The fleet of type EffortFleet is a multi-species extension to the fleet of type LinearFleet (see sec-
tion ?? above). This means that when a fleet is used to catch more than one species (either directly
or as bycatch) the different catchability for these species can be taken into account. This catcha-
bility parameter is specified by listing the names of the prey and the associated preference value,
as shown in the example below:

...
catchability
<name of stock 1> <catchability for stock 1>
<name of stock 2> <catchability for stock 2>
amount
...

7.5 QuotaFleet

The fleet type used that creates a predator that removes the caught fish based on the available
biomass of the stock multiplied by a scaling factor set according to a simple harvest control rule
is called ”QuotaFleet”. The biomass caught is then split between the various stocks, and length
groups of the stocks, according to equation ?? (see section ?? above). The scaling factor (the
parameter ”E” in the equation above) is set according to a simple harvest control rule.

This fleet type is defined by specifying the fleet name and areas it operates on, along with a
suitability function for each stock that the fleet will catch, a simple harvest control rule and a data
file listing the proportion of each stock that the fleet will catch. The file format for the QuotaFleet
is given below:

[component]
quotafleet <fleetname>
livesonareas <areas>
multiplicative <multi>
suitability <see Fleet Suitability>
quotafunction <function name>
biomasslevel <vector of biomass levels>
quotalevel <vector of quota levels>
amount <see Fleet Amounts>

46

7 Fleet Files

The optional <multi> value is a multiplicative constant used to scale the data if required - the
default value for this multiplier is 1 (ie. no scaling).

The fleets act as a predator, so Gadget also requires a suitability function to be defined for the
predation of the stocks in the model. A scaling factor that can be used when calculating the
amount that the fleet will catch is also required, and this is specified in a separate file (although
this is usually set to 1, since the scaling factor to be used is multiplied by that calculated using
the simple harvest control rule below).

The simple harvest control rule that is used to calculate the scaling factor to be used to determine
the fishing level is defined by the <function name> value, along with the <biomasslevel> and
<quotalevel> vectors. Currently there are 2 quota functions defined, and the valid function
names are:

simple - use a simple harvest control rule, based on the biomass of each stock
simplesum - use a simple harvest control rule, based on the biomass of all the stocks

The <biomasslevel> vector is a list of n biomass points at which the fishing level will change,
and the <quotalevel> vector is the corresponding list of n + 1 fishing levels. Note that the first
quotalevel value corresponds to the fishing level that will be used when the biomass is between
0 and the first biomasslevel value, so the quotalevel vector must have one more entry than the
biomasslevel vector.

An example of valid biomasslevel and quotalevel vectors is given below:

biomasslevel 10000 250000
quotalevel 0.1 0.4 0.9

The fishing level for the stock in the example shown above would be set to 0.1 if the biomass
of the stock is less than 10,000 kilogrammes, 0.4 if the biomass is between 10,000 and 250,000
kilogrammes and 0.9 if the biomass is above 250,000 kilogrammes. Note that the biomasslevel
vector has 2 entries, and that the quotalevel vector has a third entry.

7.6 Fleet Suitability

The suitability determines how the fleets act on the stocks that are caught. Since Gadget treats the
fleets as predators of the stocks, the format for the suitability functions for the fleets is the same as
the format for the suitability functions of the stock when they are acting as a predator. The format
for the suitability functions as discussed in section ?? above. Note that in the equations for the
suitability functions, the ’length’ of the predator is a meaningless concept when the predator is a
fleet.

7.7 Fleet Amounts

The amounts section of the fleet file gives the landings data for the fleets. This data is listed in a
column format in a separate file, so the main fleet file simply gives the name of this fleet data file,
as shown in the example below:

amount <name of data file>

For fleets of type TotalFleet or NumberFleet, the data file is a list of year, timestep, area, fleetname
and then the amount of catch landed (either biomass or number), taken from landings data, for
that timestep/area/fleet combination:

47

7 Fleet Files

<year> <step> <area> <fleetname> <amount>

For fleets of type LinearFleet, EffortFleet or QuotaFleet, the data file is a list of year, timestep,
area, fleetname and then the scaling factor to be used when calculating the amount of the catch
for that timestep/area/fleet combination:

<year> <step> <area> <fleetname> <scaling factor>

48

Chapter 8

Likelihood Files

The likelihood files are used to define the various likelihood components that are used to calcu-
late the ”goodness of fit” of the Gadget model to the available data. Each likelihood component
will calculate a likelihood score for that individual component, and there is then a weighted sum
of all the likelihood scores to calculate an overall likelihood score. It is this overall likelihood
score that the optimiser attempts to minimise during an optimising run.

To define likelihood files in the Gadget model, the ”main” file must contain a list of the data files
that contain the description of the likelihood classes required, and the format for this is shown
below:

[likelihood]
likelihoodfiles <names of the likelihood files>

The likelihood files contain a list of various type of likelihood classes, separated by the keyword
[component] that control the different likelihood components in the model, the name and weight
for that likelihood component and various likelihood data, depending in the likelihood compo-
nent type. The format of the likelihood files is follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type <likelihood type>
<likelihood data>

The likelihood data for each likelihood type is covered in the sub sections below. The<likelihood
type> defines the type of likelihood component that is to be used, and there are currently 12 valid
likelihood types defined in Gadget. These are:

BoundLikelihood
Understocking
CatchDistribution
CatchStatistics
StockDistribution
SurveyIndices
SurveyDistribution
StomachContent
Recaptures
RecStatistics
MigrationPenalty
CatchInKilos

49

8 Likelihood Files

8.1 BoundLikelihood (”Penalty”)

The BoundLikelihood likelihood component is used to give a penalty weight to parameters that
have moved beyond the bounds, as specified in the parameter file, in the optimisation process.
This file does not specify the bounds that are to be used, only the penalty that is to be applied
when these bounds are exceeded. Since the Simmulated Annealing (see section ??) algorithm will
always choose a value for the parameter that is within the bounds, this likelihood component will
return a zero likelihood score during an optimisation using that algorithm. However, both the
Hooke & Jeeves (see section ??) and the BFGS (see section ??) algorithms can choose a parameter
outside the specified bounds, and so this likelihood component can then return a positive score.

To specify a BoundLikelihood likelihood component, the format required in the main likelihood
file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type penalty
datafile <name for the datafile>

The datafile defines the penalty that is to be applied to the parameter when it exceeds the bounds,
as given by equation ?? below:

`i =


lwi(vali − lbi)pi if vali < lbi

uwi(vali − ubi)pi if vali > ubi

0 otherwise
(8.1)

where:
< vali > is the value of the parameter
< lwi > is the weight applied when the parameter exceeds the lower bound
< uwi > is the weight applied when the parameter exceeds the upper bound
< lbi > is the lower bound
< ubi > is the upper bound
< pi > is the power coefficient

Note that when the value of the parameter is exactly equal to the bound, this equation will give
a zero likelihood score.

The datafile lists these weights and the power that is to be used for each parameter. The format
for this file is shown below:

<switch> <power> <lower> <upper>

where <lower> is the weighting used when the parameter hits the lower bound, and <upper>
is the weighting used when the parameter hits the upper bound, for the parameter with the name
<switch>.

It is possible to define a default penalty that is used for all switches that are not defined separately.
To do this, simply enter a line in the data file with the switch name given as ”default”, and then
the power, lower and upper weights that are required. For example:

default 2 1000 1000

would define a default penalty, where the lower and upper weights were 1000, and the power
was 2.

50

8 Likelihood Files

8.2 Understocking

The Understocking likelihood component calculates a penalty that is applied if there are an in-
sufficient number of a particular prey to meet the requirements of the predators. In the case of
a fleet, this means that the landings data indicates that more fish have been landed than there
are fish in the model, for that timetep and area combination. A well defined model will have a
zero likelihood score from this component. The likelihood component that is used is the sum of
squares of the overconsumption, given by the equation below:

` =
∑
time

∑
areas

(∑
preys

Utrp

)p
(8.2)

where:
< U > is the understocking that has occurred in the model
< p > is the power coefficient (which should be 2 for sum of squares fit)

To specify an Understocking likelihood component, the format required in the main likelihood
file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type understocking
powercoeff <power>

The <power> value is optional, and if this is not given, the power coefficient is assumed to be 2,
giving a sum of squares equation for this likelihood component.

8.3 CatchDistribution

The CatchDistribution likelihood component is used to compare distribution data sampled from
the model with distribution data sampled from landings or surveys. The distribution data can
either be aggregated into age groups (giving a distribution of length groups for each age), length
groups (giving a distribution of age groups for each length) or into age-length groups. The like-
lihood score that is calculated gives some measure as to how well the data from the model fit to
the data from the sample catches.

To specify a CatchDistribution likelihood component, the format required in the main likelihood
file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type catchdistribution
datafile <name for the datafile>
function <function name>
<multivariate parameters>
aggregationlevel <0 or 1> ; 1 to aggregate data over the whole year
overconsumption <0 or 1> ; 1 to take overconsumption into account
epsilon <epsilon>
areaaggfile <area aggregation file specifying areas>
ageaggfile <age aggregation file specifying ages>
lenaggfile <length aggregation file specifying lengths>
fleetnames <vector of the names of the fleets>
stocknames <vector of the names of the stocks>

51

8 Likelihood Files

The optional flag <aggregationlevel> is used to specify whether the distribution data should
be aggregated over the whole year (by setting aggregation level to 1) or not aggregated, and
calculated for each timestep (by setting aggregation level to 0). If this line is not specified, then
an aggregation level of 0 is assumed, and the distribution data is not aggregated over the whole
year. Note that not all of the functions used to compare the data can aggregate the data over the
whole year.

The optional flag <overconsumption> is used to specify whether any over consumption of the
stock is to be taken into account when calculating the model distribution. If this is set to 1, then
the model catch data will be adjusted to ensure that the fleets don’t catch more stock than is
available, by applying a bound to the catch of the fleets. If this line is not specified, then an
overconsumption of 0 is assumed and any understocking that is present in the model is ignored,
which can lead to an unrealistic result if the understocking likelihood component is not specified.

The optional <epsilon> value is used whenever the calculated probability is very unlikely, al-
though the exact format of this depends on the function that is to be used when calculating the
likelihood score. This means that the likelihood component is not dominated by one or two stray
values, since these will be reset back to less unlikely values. The default value for <epsilon> is
10, which is used whenever it is not defined in the input file.

The<fleetnames> vector contains a list of all the fleets to be aggregated into a single pseudo fleet
for the purposes of the data comparison. Similarly, the <stocknames> vector contains a list of all
the stocks to be aggregated into a single pseudo stock.

The <function name> defines what likelihood function is to be used to compare the modelled
age-length catch distribution to the input age-length catch distribution. Currently, there are 8
likelihood functions defined, and the valid function names are:

sumofsquares - use a sum of squares function
stratified - use a stratified sum of squares function
multinomial - use a multinomial function
pearson - use a Pearson function
gamma - use a gamma function
log - use a log function
mvn - use a multivariate normal function
mvlogistic - use a multivariate logistic function

The<multivariate parameters> are only required for the multivariate functions, and Gadget will
generate an error if they are specified when they are not required. These parameters are described
in the following sections.

Finally, the file specified by <datafile> contains a list of the age-length catch distribution that
Gadget is to use to fit the likelihood function to, aggregated according to the aggregation files
specified, for the numbers calculated in the model. The format of this file is given below:

<year> <step> <area> <age> <length> <number>

where <number> is the number of samples for the timestep/area/age/length combination.

8.3.1 Sum of Squares Function

The sum of squares function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
ages

∑
lengths

(
Ptral − πtral

)2

(8.3)

52

8 Likelihood Files

where:
< P > is the proportion of the data sample for that time/area/age/length combination
< π > is the proportion of the model sample for that time/area/age/length combination

8.3.2 Stratified Sum of Squares Function

The stratified function is a variant of the sum of squares function that calculates an age distribu-
tion for each length class, and then calculates the likelihood component from equation ?? above.
The difference between this function and the sum of squares function above is in the way the
proportions of the samples are calculated - for this function the proportion is calculated for each
length group in turn, whereas for the sum of squares function the proportion is taken over all the
length groups. If there is only one length group then these two functions are identical.

8.3.3 Multinomial Function

The multinomial function calculates the likelihood component from equation ?? below:

` = 2
∑
time

∑
areas

∑
ages

(
logNtra!−

∑
lengths

logNtral! +
∑

lengths

(
Ntral log

νtral∑
νtral

))
(8.4)

where:
< N > is the data sample size for that time/area/age/length combination
< ν > is the model sample size for that time/area/age/length combination

8.3.4 Pearson Function

The Pearson function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
ages

∑
lengths

((Ntral − νtral)2

νtral + ε

)
(8.5)

where:
< N > is the data sample size for that time/area/age/length combination
< ν > is the model sample size for that time/area/age/length combination

8.3.5 Gamma Function

The gamma function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
ages

∑
lengths

(Ntral
(νtral + ε)

+ log(νtral + ε)
)

(8.6)

where:
< N > is the data sample size for that time/area/age/length combination
< ν > is the model sample size for that time/area/age/length combination

8.3.6 Log Function

The log function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

(
log
(∑

ages

∑
lengths

νtral∑
ages

∑
lengths

Ntral

))2

(8.7)

53

8 Likelihood Files

where:
< N > is the data sample size for that time/area/age/length combination
< ν > is the model sample size for that time/area/age/length combination

8.3.7 Multivariate Normal Function

The multivariate normal function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
ages

(
log|Σ|+ (Ptra − πtra)TΣ−1(Ptra − πtra)

)
(8.8)

where:
< Σ > is the variance-covariance matrix for the multivariate normal distribution
< P > is the proportion of the data sample for that time/area/age combination
< π > is the proportion of the model sample for that time/area/age combination

For the formulation of the variance-covariance matrix, < Σ > is calculated from equations ?? and
?? below:

Σ = (σij)ij (8.9)

σij =



lag∑
l=1

clσi−l,j + δijσ
2 if i ≥ j

lag∑
l=1

clσj,i−l otherwise

(8.10)

In equation ?? it is assumed that the number in each length group is autocorrelated with lag <
lag >. Note that setting the lag to be zero simplifies the multivariate normal distribution to a
univariate one.

To specify this likelihood function, it is necessary to specify the parameters < σ > and < lag >
and a list of < lag > correlation parameters. This is done in the likelihood file, as shown below:

...
function mvn
lag <lag>
sigma <sigma>
param <correlation parameter> ; note that a total of
param <correlation parameter> ; <lag> correlation
... ; parameters are required
aggregationlevel <0 or 1> ; 1 to aggregate data over the whole year
...

8.3.8 Multivariate Logistic Function

The multivariate logistic function calculates the likelihood component from equations ?? and ??
below:

` =
1

2σ2

∑
time

(
(L− 1)log(σ) +

∑
areas

∑
ages

∑
lengths

τ2
tral

)
(8.11)

τtral = log(Ptral)− log(πtral)−
1

L

∑
lengths

(
log(Ptral)− log(πtral)

)
(8.12)

54

8 Likelihood Files

where:
< L > is the number of length groups
< P > is the proportion of the data sample for that time/area/age/length combination
< π > is the proportion of the model sample for that time/area/age/length combination

To specify this likelihood function it is necessary to specify the parameter < σ >. This is done in
the likelihood file as shown below:

...
function mvlogistic
sigma <sigma>
aggregationlevel <0 or 1> ; 1 to aggregate data over the whole year
...

8.4 CatchStatistics

The CatchStatistics likelihood component is used to compare statistical data sampled from the
model with statistical data sampled from landings or surveys. This is typically used to compare
biological data, such as the mean length at age or mean weight at age. The likelihood score that
is calculated gives some measure as to how well the data from the model fits to the data from the
landings.

To specify a CatchStatistics likelihood component, the format required in the main likelihood file
is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type catchstatistics
datafile <name for the datafile>
function <function name>
overconsumption <0 or 1> ; 1 to take overconsumption into account
areaaggfile <area aggregation file specifying areas>
ageaggfile <age aggregation file specifying ages>
fleetnames <vector of the names of the fleets>
stocknames <vector of the names of the stocks>

The optional flag <overconsumption> is used to specify whether any over consumption of the
stock is to be taken into account when calculating the model statistical data. If this is set to 1,
then the model catch data will be adjusted to ensure that the fleets don’t catch more stock than
is available, by applying a bound to the catch of the fleets. If this line is not specified, then an
overconsumption of 0 is assumed and any understocking that is present in the model is ignored,
which can lead to an unrealistic result if the understocking likelihood component is not specified.

The<fleetnames> vector contains a list of all the fleets to be aggregated into a single pseudo fleet
for the purposes of the data comparison. Similarly, the <stocknames> vector contains a list of all
the stocks to be aggregated into a single pseudo stock.

The <function name> defines what likelihood function is to be used to compare the modelled
statistical data to the input statistical data. Currently, there are 5 likelihood functions defined,
and the format of the statistical data given in the file specified by <datafile> depends on the
likelihood function used. The valid functions are:

lengthcalcstddev - use a weighted sum of squares of mean length
lengthgivenstddev - use a weighted sum of squares of mean length with given standard devia-
tion

55

8 Likelihood Files

weightgivenstddev - use a weighted sum of squares of mean weight with given standard devia-
tion
weightnostddev - use a unweighted sum of squares of mean weight
lengthnostddev - use a unweighted sum of squares of mean length

8.4.1 Weighted Sum of Squares of Mean Length

This likelihood function calculates the likelihood score based on a weighted sum of squares of
the mean length, with the weighting given by calculating the variance of length of the modelled
population, as shown in equation ?? below:

` =
∑
time

∑
areas

∑
ages

((xtra − µtra)2

σ2
tra

Ntra

)
(8.13)

where:
< x > is the sample mean length from the data
< µ > is the mean length calculated from the model
< σ > is the standard deviation of the length, calculated from the model
< N > is the sample size

For this CatchStatistics function, the format of the statistical data required in the file specified by
<datafile> is given below:

<year> <step> <area> <age> <number> <mean>

where<number> is the number of samples for the timestep/area/age combination, and<mean>
is the mean length of these samples.

8.4.2 Weighted Sum of Squares of Mean Length
With Given Standard Deviation

This likelihood function calculates the likelihood score based on a weighted sum of squares of the
mean length, with the weighting given the variance of length of the input population, as shown
in equation ?? below:

` =
∑
time

∑
areas

∑
ages

((xtra − µtra)2

s2
tra

Ntra

)
(8.14)

where:
< x > is the sample mean length from the data
< µ > is the mean length calculated from the model
< s > is the standard deviation of the length from the data
< N > is the sample size

For this CatchStatistics function, the format of the statistical data required in the file specified by
<datafile> is given below:

<year> <step> <area> <age> <number> <mean> <stddev>

where <number> is the number of samples for the timestep/area/age combination, <mean> is
the mean length of these samples and <stddev> is the standard deviation of the length of these
samples.

56

8 Likelihood Files

8.4.3 Weighted Sum of Squares of Mean Weight
With Given Standard Deviation

This likelihood function calculates the likelihood score based on a weighted sum of squares of
the mean weight, with the weighting given the variance of weight of the input population, as
shown in equation ?? below:

` =
∑
time

∑
areas

∑
ages

((xtra − µtra)2

s2
tra

Ntra

)
(8.15)

where:
< x > is the sample mean weight from the data
< µ > is the mean weight calculated from the model
< s > is the standard deviation of the weight from the data
< N > is the sample size

For this CatchStatistics function, the format of the statistical data required in the file specified by
<datafile> is given below:

<year> <step> <area> <age> <number> <mean> <stddev>

where <number> is the number of samples for the timestep/area/age combination, <mean> is
the mean weight of these samples and <stddev> is the standard deviation of the weight of these
samples.

8.4.4 Unweighted Sum of Squares of Mean Weight

This likelihood function calculates the likelihood score based on a unweighted sum of squares of
the mean weight, with the variance of the weight of the population assumed to be 1, as shown in
equation ?? below:

` =
∑
time

∑
areas

∑
ages

(
(xtra − µtra)2Ntra

)
(8.16)

where:
< x > is the sample mean weight from the data
< µ > is the mean weight calculated from the model
< N > is the sample size

For this CatchStatistics function, the format of the statistical data required in the file specified by
<datafile> is given below:

<year> <step> <area> <age> <number> <mean>

where<number> is the number of samples for the timestep/area/age combination, and<mean>
is the mean weight of these samples.

8.4.5 Unweighted Sum of Squares of Mean Length

This likelihood function calculates the likelihood score based on a unweighted sum of squares of
the mean length, with the variance of the length of the population assumed to be 1, as shown in
equation ?? below:

` =
∑
time

∑
areas

∑
ages

(
(xtra − µtra)2Ntra

)
(8.17)

57

8 Likelihood Files

where:
< x > is the sample mean length from the data
< µ > is the mean length calculated from the model
< N > is the sample size

For this CatchStatistics function, the format of the statistical data required in the file specified by
<datafile> is given below:

<year> <step> <area> <age> <number> <mean>

where<number> is the number of samples for the timestep/area/age combination, and<mean>
is the mean length of these samples.

8.5 StockDistribution

The StockDistribution likelihood component is used to compare distribution data sampled from
the model with distribution data sampled from landings or surveys for different stocks within
the Gadget model. This is typically used to compare Gadget stocks that are based on the same
species, but have differing biological properties (eg. immature and mature fish). The distribu-
tion data can either be aggregated into age groups (giving a distribution of length groups for
each age), length groups (giving a distribution of age groups for each length) or into age-length
groups. The likelihood score that is calculated gives some measure as to how well the data from
the model fits to the data from the landings.

To specify a StockDistribution likelihood component, the format required in the main likelihood
file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type stockdistribution
datafile <name for the datafile>
function <function name>
overconsumption <0 or 1> ; 1 to take overconsumption into account
epsilon <epsilon>
areaaggfile <area aggregation file specifying areas>
ageaggfile <age aggregation file specifying ages>
lenaggfile <length aggregation file specifying lengths>
fleetnames <vector of the names of the fleets>
stocknames <vector of the names of the stocks>

The optional flag <overconsumption> is used to specify whether any over consumption of the
stock is to be taken into account when calculating the model distribution. If this is set to 1, then
the model catch data will be adjusted to ensure that the fleets don’t catch more stock than is
available, by applying a bound to the catch of the fleets. If this line is not specified, then an
overconsumption of 0 is assumed and any understocking that is present in the model is ignored,
which can lead to an unrealistic result if the understocking likelihood component is not specified.

The optional <epsilon> value is used whenever the calculated probability is very unlikely, al-
though the exact format of this depends on the function that is to be used when calculating the
likelihood score. This means that the likelihood component is not dominated by one or two stray
values, since these will be reset back to less unlikely values. The default value for <epsilon> is
10, which is used whenever it is not defined in the input file.

The<fleetnames> vector contains a list of all the fleets to be aggregated into a single pseudo fleet
for the purposes of the data comparison. However, the<stocknames> vector contains a list of all

58

8 Likelihood Files

the stocks to be compared for the data comparison. These stocks are not aggregated into a single
pseudo stock.

The <function name> defines what likelihood function is to be used to compare the modelled
age-length stock distribution to the input age-length stock distribution. Currently, there are two
likelihood functions defined, and the valid functions are:

sumofsquares - use a sum of squares function
multinomial - use a multinomial function

Finally, the datafile is a list of the age-length catch distribution for each stock, that Gadget is to
use to fit the likelihood function to, aggregated according to the aggregation files specified, for
the numbers calculated in the model. The format of this file is given below:

<year> <step> <area> <stock> <age> <length> <number>

where <number> is the number of samples for the timestep/area/stock/age/length combina-
tion.

8.5.1 Sum of Squares Function

The sum of squares function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
ages

∑
lengths

∑
stocks

(Ptrals − πtrals)2 (8.18)

where:
< P > is the proportion of the data sample for that time/area/age/length/stock combination
< π > is the proportion of the model sample for that time/area/age/length/stock combination

8.5.2 Multinomial Function

The multinomial function calculates the likelihood component from equation ?? below:

` = 2
∑
time

∑
areas

∑
ages

∑
lengths

(
logNtral!−

∑
stocks

logNtrals! +
∑

stocks

(
Ntrals log

νtral∑
νtrals

))
(8.19)

where:
< N > is the data sample size for that time/area/age/length/stock combination
< ν > is the model sample size for that time/area/age/length/stock combination

8.6 SurveyIndices

The SurveyIndices likelihood component is used to compare the development of a stock in the
Gadget model to indices calculated from a standardized survey for that stock. These indices can
be aggregated into length groups or age groups. The likelihood component that is used is the
sum of squares of a linear regression fitted to the difference between the modelled data and the
specified index, given by equation ?? below:

` =
∑
time

(
It − (α+ βNt)

)2

(8.20)

where:
< I > is the observed survey index
< N > is the corresponding index calculated in the Gadget model

59

8 Likelihood Files

The exact format of this linear regression equation will vary, depending on survey index data
available. It is possible to take the log of the indices and the modelled data before fitting the
linear regression line. The slope and intercept of the linear regression line are controlled by the
parameters alpha and beta, and it is possible to fix these to specified numbers, or let Gadget
calculate these to get the best fit to the modelled data.

To specify a SurveyIndices likelihood component, the format required in the main likelihood file
is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type surveyindices
datafile <name for the datafile>
sitype <survey index type>
biomass <0 or 1> ; 1 to base index data on biomass
<survey index data>

The optional flag <biomass> is used to specify whether the index data should be based on the
biomass of the stock or on the population numbers for the stock. If this is set to 1, then the index
data calculated in the model will be based on the available biomass of the stock. If this line is not
specified, then a biomass value of 0 is assumed and the index data calculated in the model will
be based on the available population numbers for the stock.

The format of the survey index data, and the contents of the datafile, depend on the type of
survey index that is to be used, which is specified by the value of <survey index type>. There
are currently 5 valid options, which are:

lengths - defining a length group based survey index
ages - defining an age group based survey index
fleets - defining a length group based survey index, taking the fleet selectivity into account
acoustic - defining an acoustic based survey index
effort - defining an fishing effort based survey index

8.6.1 SurveyIndices by Length

To specify a length group based SurveyIndices likelihood component, the format required in the
main likelihood file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type surveyindices
datafile <name for the datafile>
sitype lengths
biomass <0 or 1> ; 1 to base index data on biomass
areaaggfile <area aggregation file specifying areas>
lenaggfile <length aggregation file specifying lengths>
stocknames <vector of the names of the stocks>
fittype <fit type>
<fit type parameters>

The datafile is a list of the indices that Gadget is to use to fit the linear regression to, aggregated
according to the length aggregation file specified, for the population numbers calculated in the
model. The format of this file is given below:

<year> <step> <area> <length> <number>

60

8 Likelihood Files

where <number> is the survey index for that timestep/area/length combination.

The<fit type> defines the type of linear regression equation to be used to calculate the likelihood
score for this likelihood component. These options specify whether or not the log of the numbers
is to be used, and whether the parameters alpha and beta are to be estimated by Gadget, or fixed.
If these parameters are to be fixed, then they are specified here. In total, there are 8 valid entries
for <fit type>, and the associated parameters, and these are:

linearfit
loglinearfit
fixedslopelinearfit
fixedslopeloglinearfit
fixedinterceptlinearfit
fixedinterceptloglinearfit
fixedlinearfit
fixedloglinearfit

linear regression, estimating both slope and intercept

This fit type will fit a linear regression line, with the alpha and beta parameter values estimated
from the data within the Gadget model. The file format for this fit type is given below:

fittype linearfit

log linear regression, estimating both slope and intercept

This fit type will fit a log linear regression line, with the alpha and beta parameter values esti-
mated from the data within the Gadget model. The file format for this fit type is given below:

fittype loglinearfit

linear regression, fixing slope and estimating intercept

This fit type will fit a linear regression line, with the alpha parameter value estimated from the
data within the Gadget model, and the beta parameter value specified in the input file. The file
format for this fit type is given below:

fittype fixedslopelinearfit
slope <beta>

log linear regression, fixing slope and estimating intercept

This fit type will fit a log linear regression line, with the alpha parameter value estimated from
the data within the Gadget model, and the beta parameter value specified in the input file. The
file format for this fit type is given below:

fittype fixedslopeloglinearfit
slope <beta>

linear regression, fixing intercept and estimating slope

This fit type will fit a linear regression line, with the beta parameter value estimated from the
data within the Gadget model, and the alpha parameter value specified in the input file. The file
format for this fit type is given below:

fittype fixedinterceptlinearfit
intercept <alpha>

61

8 Likelihood Files

log linear regression, fixing intercept and estimating slope

This fit type will fit a log linear regression line, with the beta parameter value estimated from the
data within the Gadget model, and the alpha parameter value specified in the input file. The file
format for this fit type is given below:

fittype fixedinterceptloglinearfit
intercept <alpha>

linear regression, fixing both slope and intercept

This fit type will fit a linear regression line, with the alpha and beta parameter values specified
in the input file. The file format for this fit type is given below:

fittype fixedlinearfit
slope <beta>
intercept <alpha>

log linear regression, fixing both slope and intercept

This fit type will fit a log linear regression line, with the alpha and beta parameter values specified
in the input file. The file format for this fit type is given below:

fittype fixedloglinearfit
slope <beta>
intercept <alpha>

8.6.2 SurveyIndices by Age

To specify an age group based SurveyIndices likelihood component, the format required in the
main likelihood file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type surveyindices
datafile <name for the datafile>
sitype ages
biomass <0 or 1> ; 1 to base index data on biomass
areaaggfile <area aggregation file specifying areas>
ageaggfile <age aggregation file specifying ages>
stocknames <vector of the names of the stocks>
fittype <fit type>
<fit type parameters>

The datafile is a list of the indices that Gadget is to use to fit the linear regression to, aggre-
gated according to the age aggregation file specified, for the population numbers calculated in
the model. The format of this file is given below:

<year> <step> <area> <age> <number>

where <number> is the survey index for that timestep/area/age combination.

The<fit type> defines the type of linear regression equation to be used to calculate the likelihood
score for this likelihood component. The valid fit type options are the same as for the length based
survey indices, given in section ?? above.

62

8 Likelihood Files

8.6.3 SurveyIndices by Fleet

To specify a length group based SurveyIndices likelihood component taking the fleet selectivity
into account, the format required in the main likelihood file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type surveyindices
datafile <name for the datafile>
sitype fleets
biomass <0 or 1> ; 1 to base index data on biomass
areaaggfile <area aggregation file specifying areas>
lenaggfile <length aggregation file specifying lengths>
fleetnames <vector of the names of the fleets>
stocknames <vector of the names of the stocks>
fittype <fit type>
<fit type parameters>

The datafile is a list of the indices that Gadget is to use to fit the linear regression to, aggregated
according to the length aggregation file specified, for the population numbers calculated in the
model. The format of this file is given below:

<year> <step> <area> <length> <number>

where <number> is the survey index for that timestep/area/length combination.

The<fit type> defines the type of linear regression equation to be used to calculate the likelihood
score for this likelihood component. The valid fit type options are the same as for the length based
survey indices, given in section ?? above.

8.6.4 SurveyIndices by Acoustic

To specify an acoustic based SurveyIndices likelihood component, the format required in the
main likelihood file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type surveyindices
datafile <name for the datafile>
sitype acoustic
biomass <0 or 1> ; 1 to base index data on biomass
areaaggfile <area aggregation file specifying areas>
surveynames <vector of the names of the acoustic surveys>
stocknames <vector of the names of the stocks>
fittype <fit type>
<fit type parameters>

The datafile is a list of the acoustic indices that Gadget is to use to fit the linear regression to, for
the population calculated in the model. The format of this file is given below:

<year> <step> <area> <survey> <acoustic>

where <acoustic> is the acoustic index for that timestep/area/survey combination.

The<fit type> defines the type of linear regression equation to be used to calculate the likelihood
score for this likelihood component. The valid fit type options are the same as for the length based
survey indices, given in section ?? above.

63

8 Likelihood Files

8.6.5 SurveyIndices by Effort

To specify an effort based SurveyIndices likelihood component, the format required in the main
likelihood file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type surveyindices
datafile <name for the datafile>
sitype effort
biomass <0 or 1> ; 1 to base index data on biomass
areaaggfile <area aggregation file specifying areas>
fleetnames <vector of the names of the fleets>
stocknames <vector of the names of the stocks>
fittype <fit type>
<fit type parameters>

The datafile is a list of the fleet effort indices that Gadget is to use to fit the linear regression to,
for the fishing effort calculated in the model. The format of this file is given below:

<year> <step> <area> <fleet> <effort>

where <effort> is the effort index for that timestep/area/fleet combination.

The<fit type> defines the type of linear regression equation to be used to calculate the likelihood
score for this likelihood component. The valid fit type options are the same as for the length based
survey indices, given in section ?? above.

8.7 SurveyDistribution

The SurveyDistribution likelihood component is used to compare the development of a stock in
the Gadget model to age-length indices calculated from a survey for that stock. The likelihood
score that is calculated gives some measure as to how well the data from the model fits to the
data from the calculated survey index distribution.

To specify a SurveyDistribution likelihood component, the format required in the main likelihood
file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type surveydistribution
datafile <name for the datafile>
areaaggfile <area aggregation file specifying areas>
lenaggfile <length aggregation file specifying lengths>
ageaggfile <age aggregation file specifying ages>
stocknames <vector of the names of the stocks>
fittype <fit type>
parameters <fit type parameters>
<suitability parameters>
epsilon <epsilon>
likelihoodtype <likelihood type>

The <stocknames> vector contains a list of all the stocks to be aggregated into a single pseudo
stock for the purposes of the data comparison. The <suitability parameters> define the suitabil-
ity of the survey fleet that was used to collect the survey index data. This is the same format as

64

8 Likelihood Files

the suitability functions for the stock, as discussed in section ?? above. Note that only one set of
suitability values is defined, which will be applied to all the stocks for this likelihood component.

The <fit type> defines what function is to be used to calculate the survey index distribution
from the modelled population. Currently, there are two functions defined, and the valid function
names are:

linearfit - use a linear function
powerfit - use a power function

The <fit type parameters> is a vector of 2 parameters that are used to calculate the survey index
values from the modelled population. The <epsilon> value is used whenever the calculated
probability is very unlikely, although the exact format of this depends on the likelihood type that
is to be used when calculating the likelihood score.

The<likelihood type> defines what function is to be used to compare the modelled survey index
distribution to the input survey index distribution. Currently, there are 4 functions defined, and
the valid function names are:

multinomial - use a multinomial function
pearson - use a Pearson function
gamma - use a gamma function
log - use a log function

Finally, the file specified by<datafile> contains a list of the age-length survey indices that Gadget
is to use to fit the likelihood function to, aggregated according to the aggregation files specified,
for the numbers calculated in the model. The format of this file is given below:

<year> <step> <area> <age> <length> <number>

where <number> is the survey index for the timestep/area/age/length combination.

8.7.1 Linear Fit

The linear fit function calculates the survey index for the modelled population from equation ??
below:

Îtral = q0Sl
(
Ntral + q1

)
(8.21)

where:
< S > is the calculated suitability value for that length group
< N > is the model population for that time/area/age/length combination

8.7.2 Power Fit

The power fit function calculates the survey index for the modelled population from equation ??
below:

Îtral = q0SlN
q1
tral (8.22)

where:
< S > is the calculated suitability value for that length group
< N > is the model population for that time/area/age/length combination

65

8 Likelihood Files

8.7.3 Multinomial Function

The multinomial function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

(
log
(∑

ages

∑
lengths

Îtral
)
−

∑
ages

∑
lengths

(
Îtral log(Itral + ε)

)
∑
ages

∑
lengths

Itral

)
(8.23)

where:
< I > is the data survey index for that time/area/age/length combination
< Î > is the model survey index for that time/area/age/length combination

8.7.4 Pearson Function

The Pearson function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
ages

∑
lengths

((Itral − Îtral)2

Îtral + ε

)
(8.24)

where:
< I > is the data survey index for that time/area/age/length combination
< Î > is the model survey index for that time/area/age/length combination

8.7.5 Gamma Function

The gamma function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
ages

∑
lengths

(Itral

(Îtral + ε)
+ log(Îtral + ε)

)
(8.25)

where:
< I > is the data survey index for that time/area/age/length combination
< Î > is the model survey index for that time/area/age/length combination

8.7.6 Log Function

The log function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

(
log
(∑

ages

∑
lengths

Îtral∑
ages

∑
lengths

Itral

))2

(8.26)

where:
< I > is the data survey index for that time/area/age/length combination
< Î > is the model survey index for that time/area/age/length combination

8.8 StomachContent

The StomachContent likelihood component is used to compare consumption data sampled from
the model with stomach content data obtained by analysing the stomach contents of various
predators. This data can be used to give an indication of the diet composition of the stock. The
likelihood score that is calculated gives some measure as to how well the consumption data

66

8 Likelihood Files

from the model fits to the data from the stomach contents. Care is needed when making this
comparison, since the data will give information on the stomach content at the time of capture
of the predator, where as the Gadget simulation can only give information about the modelled
consumption of the prey by the predator.

To specify a StomachContent likelihood component, the format required in the main likelihood
file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type stomachcontent
function <function name>
datafile <name for the datafile>
epsilon <epsilon>
areaaggfile <area aggregation file specifying areas>
predatornames <vector of the names of the predators>
predatorlengths
lenaggfile <length aggregation file specifying predator lengths>
preyaggfile <prey aggregation file specifying preys>

The optional <epsilon> value is used whenever the calculated probability is very unlikely, al-
though the exact format of this depends on the function that is to be used when calculating the
likelihood score. This means that the likelihood component is not dominated by one or two stray
values, since these will be reset back to less unlikely values. The default value for <epsilon> is
10, which is used whenever it is not defined in the input file.

The <predatornames> vector contains a list of all the predators to be aggregated into a single
pseudo predator for the purposes of the data comparison.

The <function name> defines what likelihood function is to be used to compare the modelled
consumption data to the input stomach content data. Currently, there is only one likelihood
function defined, so the valid function name is:

scsimple - use a simple ratio function

Finally, the file specified by <datafile> contains a list of the stomach content data that Gadget is
to use to fit the likelihood function to, aggregated according to the aggregation files specified, for
the consumption calculated in the model. The format of this file is given below:

<year> <step> <area> <predator> <prey> <ratio>

where <ratio> is the ratio of prey <prey> in the stomachs of predator <predator> for the
timestep/area combination, where<prey> is defined in the prey aggregation file, and<predator>
is defined in the predator length aggregation file.

8.8.1 SCSimple Function

The scsimple function calculates the likelihood component by comparing the ratio of the con-
sumption of different preys by a predator in the model to the ratio of the preys found in the
stomach contents data specified in the input file, as shown in equation ?? below:

` =
∑
time

∑
areas

∑
predators

∑
preys

(
Ptrpp − πtrpp

)2

(8.27)

where:
< P > is the ratio of the stomach content data for that time/area/predator/prey combination
< π > is the ratio of the modelled consumption for that time/area/predator/prey combination

67

8 Likelihood Files

8.9 Recaptures

The Recaptures likelihood component is used to compare recaptures data from tagging exper-
iments within the model with recaptures data obtained from tagging experiments, aggregated
according to length at recapture. The likelihood score that is calculated gives some measure as to
how well the data from the model fits the recaptures data.

To specify a Recaptures likelihood component, the format required in the main likelihood file is
as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type recaptures
datafile <name for the datafile>
function <function name>
areaaggfile <area aggregation file specifying areas>
lenaggfile <length aggregation file specifying recapture lengths>
fleetnames <vector of the names of the fleets>

The<fleetnames> vector contains a list of all the fleets to be aggregated into a single pseudo fleet
for the purposes of the data comparison.

The <function name> defines what likelihood function is to be used to compare the modelled
recaptures data to the input recaptures data. Currently, there is only one likelihood function
defined, so the only valid function name is:

poisson - use a Poisson function

Finally, the datafile is a list of the recaptures that Gadget is to use to fit the likelihood function to,
aggregated according to the aggregation files specified, for the numbers calculated in the model.
The format of this file is given below:

<tagid> <year> <step> <area> <length> <number>

where <number> is the number of recaptures for the tag/timestep/area/length combination.

8.9.1 Poisson Function

The Poisson function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
lengths

(
Ntrl + log νtrl!−Ntrl log νtrl

)
(8.28)

where:
< N > is the number of observed recaptures for that time/area/length combination
< ν > is the number of modelled recaptures for that time/area/length combination

8.10 RecStatistics

The RecStatistics likelihood component is used to compare statistical data sampled from tagged
subpopulations within the model with statistical data obtained from the fish returned from tag-
ging experiments. This is used to compare biological data, such as the mean length at age, and is
similar to the CatchStatistics likelihood component (see section ??). The likelihood score that is
calculated gives some measure as to how well the data from the model fits to the data from the
recaptures.

68

8 Likelihood Files

To specify a RecStatistics likelihood component, the format required in the main likelihood file is
as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type recstatistics
datafile <name for the datafile>
function <function name>
areaaggfile <area aggregation file specifying areas>
fleetnames <vector of the names of the fleets>

The<fleetnames> vector contains a list of all the fleets to be aggregated into a single pseudo fleet
for the purposes of the data comparison.

The <function name> defines what likelihood function is to be used to compare the modelled
statistical data to the input statistical data. Currently, there are three likelihood functions defined,
and the format of the statistical data given in the file specified by <datafile> depends on the
likelihood function used. The valid functions are:

lengthcalcstddev - use a weighted sum of squares of mean length
lengthgivenstddev - use a weighted sum of squares of mean length with given standard deviation
lengthnostddev - use a unweighted sum of squares of mean length

8.10.1 Weighted Sum of Squares of Mean Length

This likelihood function calculates the likelihood score based on a weighted sum of squares of
the mean length, with the weighting given by calculating the variance of length of the modelled
population, as shown in equation ?? below:

` =
∑
tags

∑
time

∑
areas

((x− µ)2

σ2
N
)

(8.29)

where:
< x > is the sample mean length from the data
< µ > is the mean length calculated from the model
< σ > is the standard deviation of the length, calculated from the model
< N > is the sample size

For this RecStatistics function, the format of the statistical data required in the file specified by
<datafile> is given below:

<tagid> <year> <step> <area> <number> <mean>

where<number> is the number of samples for the tag/timestep/area combination, and<mean>
is the mean length of these samples.

8.10.2 Weighted Sum of Squares of Mean Length
With Given Standard Deviation

This likelihood function calculates the likelihood score based on a weighted sum of squares of the
mean length, with the weighting given the variance of length of the input population, as shown
in equation ?? below:

` =
∑
tags

∑
time

∑
areas

((x− µ)2

s2
N
)

(8.30)

69

8 Likelihood Files

where:
< x > is the sample mean length from the data
< µ > is the mean length calculated from the model
< s > is the standard deviation of the length from the data
< N > is the sample size

For this RecStatistics function, the format of the statistical data required in the file specified by
<datafile> is given below:

<tagid> <year> <step> <area> <number> <mean> <stddev>

where <number> is the number of samples for the tag/timestep/area combination, <mean> is
the mean length of these samples and <stddev> is the standard deviation of the length of these
samples.

8.10.3 Unweighted Sum of Squares of Mean Length

This likelihood function calculates the likelihood score based on a unweighted sum of squares of
the mean length, with the variance of the length of the population assumed to be 1, as shown in
equation ?? below:

` =
∑
tags

∑
time

∑
areas

(
(x− µ)2N

)
(8.31)

where:
< x > is the sample mean length from the data
< µ > is the mean length calculated from the model
< N > is the sample size

For this RecStatistics function, the format of the statistical data required in the file specified by
<datafile> is given below:

<tagid> <year> <step> <area> <number> <mean>

where<number> is the number of samples for the tag/timestep/area combination, and<mean>
is the mean length of these samples.

8.11 MigrationPenalty

The MigrationPenalty likelihood component is used to give a penalty whenever there is a nega-
tive migration value from the migration matrices (which is meaningless). The MigrationPenalty
component is used (rather than the BoundLikelihood component) since the values in the migra-
tion matrices are calculated from more than one parameter, and it is not necessarily the individual
parameters that are wrong, rather the combination of the parameters that give the migration ma-
trix value that is wrong. The likelihood component that is used is based on the sum of squares of
the migration values, given by the equation below:

` =

∑
ij

Mp0
ij

p1

(8.32)

The use of 2 power coefficients gives increased flexibility for the likelihood component. In gen-
eral, a higher value of p1 applies a higher penalty to ”many small negative values”, where as a
higher value of p0 applies a higher penalty to ”few large negative values”. For a simple sum of
squares of the migration matrix values, p0 should be set to 2, and p1 should be set to 1.

70

8 Likelihood Files

To specify a MigrationPenalty likelihood component, the format required in the main likelihood
file is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type migrationpenalty
stockname <name for the stock to check>
powercoeffs <p0> <p1>

Note that it is not possible to aggregate more than one stock into a single pseudo stock for this
likelihood component.

8.12 CatchInKilos

The CatchInKilos likelihood component is used to compare the overall catch from the modelled
fleets with landings data. This can be done for any fleet that has landings data available, but will
give more useful information when used with fleets of type ”LinearFleet”, since the ”TotalFleet”
fleet type will catch the amount specified in the input file (see section ?? for more information on
the available fleet types).

To specify a CatchInKilos likelihood component, the format required in the main likelihood file
is as follows:

[component]
name <name for the likelihood component>
weight <weight for the likelihood component>
type catchinkilos
datafile <name for the datafile>
function <function name>
aggregationlevel <0 or 1> ; 1 to aggregate data over the whole year
epsilon <epsilon>
areaaggfile <area aggregation file specifying areas>
fleetnames <vector of the names of the fleets>
stocknames <vector of the names of the stocks>

The optional flag <aggregationlevel> is used to specify whether the catch data should be aggre-
gated over the whole year (by setting aggregation level to 1) or not aggregated, and calculated for
each timestep (by setting aggregation level to 0). If this line is not specified, then an aggregation
level of 0 is assumed, and the catch data is not aggregated over the whole year.

The<fleetnames> vector contains a list of all the fleets to be aggregated into a single pseudo fleet
for the purposes of the data comparison. Similarly, the <stocknames> vector contains a list of all
the stocks to be aggregated into a single pseudo stock.

The optional <epsilon> value is used in the likelihood function to avoid problems that would
arise from taking the logarithm of zero. Epsilon is added to both the modelled and observed
landings data, to ensure that these values are always positive, and thus should be set to a small
number. The default value for <epsilon> is 10, which is used whenever it is not defined in the
input file.

The <function name> defines what likelihood function is to be used to compare the modelled
catch to the input catch. Currently, there is only one likelihood function defined, so the only valid
function name is:

sumofsquares - use a log sum of squares function

71

8 Likelihood Files

Finally, the file specified by <datafile> contains the landings data that Gadget is to use to fit the
likelihood function to for the catch calculated in the model. The format of this file is given below:

<year> <step> <area> <fleet> <biomass>

where <biomass> is the catch for the timestep/area/fleet combination. The <step> column is
optional if the <aggregationlevel> flag has been set to 1, since the data will be aggregated over
the whole year. In this case, it is possible to specify the landings data in the following format:

<year> <area> <fleet> <biomass>

8.12.1 Sum of Squares Function

The sum of squares function calculates the likelihood component from equation ?? below:

` =
∑
time

∑
areas

∑
fleets

(log(Ntrf + ε)− log(νtrf + ε))2 (8.33)

where:
< N > is the catch biomass for that time/area/fleet combination
< ν > is the modelled catch biomass for that time/area/fleet combination

72

Chapter 9

Print Files

The print files are used to control the output from the Gadget model (and not the output from
the optimisation process). To avoid writing the model output from each iteration of a optimis-
ing process (and thus generating very large files), any printfile settings are ignored if Gadget is
started with the -l switch.

To define print files in the Gadget model, the ”main” file must contain a list of the data files that
contain the description of the printer classes required, and the format for this is shown below:

printfiles <names of the print files>

The print files contain a list of various type of printer classes, separated by the keyword [compo-
nent], that output different information from the model, and the name of the file that the infor-
mation is to be written to. All the output is written as a plain ASCII text file that can be viewed
in any text editor. The format of the print file is follows:

[component]
type <printer type>
<printer data>

The printer data for each printer type is covered in the sub sections below. The <printer type>
defines the type of output that will be generated from the Gadget model, and there are currently
11 valid printer types defined in Gadget. These are:

StockStdPrinter
StockFullPrinter
StockPrinter
PredatorPrinter
PredatorOverPrinter
PreyOverPrinter
StockPreyFullPrinter
StockPreyPrinter
PredatorPreyPrinter
LikelihoodPrinter
LikelihoodSummaryPrinter

73

9 Print Files

9.1 StockStdPrinter

The printer type to output the standard details of a stock is called ”StockStdPrinter”. This printer
type is defined by specifying the stock and timesteps of interest. The file format for this compo-
nent is given below:

[component]
type stockstdprinter
stockname <name of the stock>
scale <scaling factor>
printfile <name for the output file to be created>
precision <precision to be used in the output file>
printatstart <0 or 1> ; 1 to print at start of timestep
yearsandsteps <ActionAtTime to determine when to print>

The optional<scale> factor is used to scale the size of the stock, which can be used to display the
stock in terms of thousands of fish, for example. The default value for this parameter is 1, which
will ensure that no scaling will take place.

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

The optional flag <printatstart> is used to specify whether the information about the stock
should be printed at the start or the end of the timestep. If this is set to 1, then the stock in-
formation as it is at the start of the timestep is printed, before any other calculation has taken
place (see appendix ?? for more information on the order of the calculations). The default value
for <printatstart> is 0, which means that the information at the end of the timestep is printed,
and is used whenever the flag is not specified in the input file.

The output that is generated from this printer type is a file containing the following information
for the stock specified on the <stockname> line:

year-step-area-age-number-length-weight-stddev-consumed-biomass

where:
<number> is the stock population for that timestep/area/age combination
<length> is the mean length for that timestep/area/age combination
<weight> is the mean weight for that timestep/area/age combination
<stddev> is the standard deviation for the length for that timestep/area/age combination
<consumed> is the stock population that has been consumed by all the predators (including
fleets) for that timestep/area/age combination
<biomass> is the stock biomass that has been consumed by all the predators (including fleets)
for that timestep/area/age combination

9.2 StockFullPrinter

The printer type to output some more detailed information about a stock is called ”StockFull-
Printer”. This printer type is defined by specifying the stock and timesteps of interest. The file
format for this component is given below:

[component]
type stockfullprinter
stockname <name of the stock>
printfile <name for the output file to be created>
precision <precision to be used in the output file>
printatstart <0 or 1> ; 1 to print at start of timestep
yearsandsteps <ActionAtTime to determine when to print>

74

9 Print Files

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

The optional flag <printatstart> is used to specify whether the information about the stock
should be printed at the start or the end of the timestep. If this is set to 1, then the stock in-
formation as it is at the start of the timestep is printed, before any other calculation has taken
place (see appendix ?? for more information on the order of the calculations). The default value
for <printatstart> is 0, which means that the information at the end of the timestep is printed,
and is used whenever the flag is not specified in the input file.

The output that is generated from this printer type is a file containing the following information
for the stock specified on the <stockname> line:

year-step-area-age-length-number-weight

where:
<number> is the population for that timestep/area/age/length combination
<weight> is the mean weight for that timestep/area/age/length combination

9.3 StockPrinter

The printer type to output information about (one or more) stocks, with the information ag-
gregated into a convenient grouping, is called ”StockPrinter”. This printer type is defined by
specifying the stocks, areas, age groups, length groups and timesteps of interest. The file format
for this component is given below:

[component]
type stockprinter
stocknames <vector of the names of the stocks>
areaaggfile <area aggregation file specifying areas>
ageaggfile <age aggregation file specifying ages>
lenaggfile <length aggregation file specifying lengths>
printfile <name for the output file to be created>
precision <precision to be used in the output file>
printatstart <0 or 1> ; 1 to print at start of timestep
yearsandsteps <ActionAtTime to determine when to print>

Note that this printer type can aggregate more than one stock into a combined pseudo stock for
the output file.

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

The optional flag <printatstart> is used to specify whether the information about the stock
should be printed at the start or the end of the timestep. If this is set to 1, then the stock in-
formation as it is at the start of the timestep is printed, before any other calculation has taken
place (see appendix ?? for more information on the order of the calculations). The default value
for <printatstart> is 0, which means that the information at the end of the timestep is printed,
and is used whenever the flag is not specified in the input file.

The output that is generated from this printer type is a file containing the following information
for all the stocks specified on the <stocknames> line:

year-step-area-age-length-number-weight

75

9 Print Files

where:
<area> is the label for the area from the area aggregation file
<age> is the label for the age group from the age aggregation file
<length> is the label for the length group from the length aggregation file
<number> is the population for that timestep/area/age/length combination
<weight> is the mean weight for that timestep/area/age/length combination

9.4 PredatorPrinter

The printer type to output information about predation, with the information aggregated into a
convenient grouping, is called ”PredatorPrinter”. This printer type is defined by specifying the
predators, preys, areas, length groups and timesteps of interest. The file format for this compo-
nent is given below:

[component]
type predatorprinter
predatornames <vector of the names of the predators>
preynames <vector of the names of the preys>
areaaggfile <area aggregation file specifying areas>
predlenaggfile <length aggregation file specifying predator lengths>
preylenaggfile <length aggregation file specifying prey lengths>
biomass <0 or 1> ; 1 to print biomass consumed
printfile <name for the output file to be created>
precision <precision to be used in the output file>
yearsandsteps <ActionAtTime to determine when to print>

Note that this printer type can aggregate more than one predator into a combined pseudo preda-
tor, and more than one prey into a pseudo prey, for the output file.

The optional flag <biomass> is used to specify whether the information about the consumption
of the preys by the predators is printed by biomass consumed or by number consumed. If this is
set to 1 then information about the consumption is printed by biomass consumed. If this is set to
0 then this information is printed by number consumed. The default value for <biomass> is 1,
which means that the consumption by biomass will be printed if this flag is not specified in the
input file.

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

The output that is generated from this printer type is a file containing the following predation
information for all the predators specified on the<predatornames> line, consuming all the preys
specified on the <preynames> line:

year-step-area-pred-prey-amount

where:
<area> is the label for the area from the area aggregation file
<pred> is the label for the predator length group from the length aggregation file
<prey> is the label for the prey length group from the length aggregation file
<amount> is the biomass (or number) consumed for that timestep/area/predator length/prey
length combination, depending on the value of the <biomass> flag in the input file

76

9 Print Files

9.5 PredatorOverPrinter

The printer type to output information about predator over consumption (where a predator has
failed to eat the required amount of prey since the prey is not available), with the information
aggregated into a convenient grouping, is called ”PredatorOverPrinter”. This printer type is de-
fined by specifying the predators, areas, length groups and timesteps of interest. The file format
for this component is given below:

[component]
type predatoroverprinter
predatornames <vector of the names of the predators>
areaaggfile <area aggregation file specifying areas>
lenaggfile <length aggregation file specifying lengths>
printfile <name for the output file to be created>
precision <precision to be used in the output file>
yearsandsteps <ActionAtTime to determine when to print>

Note that this printer type can aggregate more than one predator into a combined pseudo preda-
tor for the output file.

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

The output that is generated from this printer type is a file containing the following over-consumption
information for all the predators specified on the <predatornames> line:

year-step-area-length-biomass

where:
<area> is the label for the area from the area aggregation file
<length> is the label for the length group from the length aggregation file
<biomass> is the biomass that the predator failed to consume for that timestep/area/length
combination

9.6 PreyOverPrinter

The printer type to output information about prey over consumption (where there has been in-
sufficient prey for a predator to consume), with the information aggregated into a convenient
grouping, is called ”PreyOverPrinter”. This printer type is the inverse of the PredatorOverPrinter
printer type, in that it gives the same information, but from the point of view of the preys, not
the predators. This printer type is defined by specifying the preys, areas, length groups and
timesteps of interest. The file format for this component is given below:

[component]
type preyoverprinter
preynames <vector of the names of the preys>
areaaggfile <area aggregation file specifying areas>
lenaggfile <length aggregation file specifying lengths>
printfile <name for the output file to be created>
precision <precision to be used in the output file>
yearsandsteps <ActionAtTime to determine when to print>

Note that this printer type can aggregate more than one prey into a combined pseudo prey for
the output file.

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

77

9 Print Files

The output that is generated from this printer type is a file containing the following over-consumption
information for all the preys specified on the <preynames> line:

year-step-area-length-biomass

where:
<area> is the label for the area from the area aggregation file
<length> is the label for the length group from the length aggregation file
<biomass> is the biomass of the prey that was unavailable, for that timestep/area/length com-
bination

9.7 StockPreyFullPrinter

The printer type to output detailed information about a prey is called ”StockPreyFullPrinter”.
This printer type is defined by specifying the prey and timesteps of interest. The file format for
this component is given below:

[component]
type stockpreyfullprinter
preyname <name of the prey>
printfile <name for the output file to be created>
precision <precision to be used in the output file>
yearsandsteps <ActionAtTime to determine when to print>

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

The output that is generated from this printer type is a file containing the following information
for the prey specified on the <preyname> line:

year-step-area-age-length-number-biomass

where:
<number> is the total population consumed for that timestep/area/age/length combination
<biomass> is the total biomass consumed for that timestep/area/age/length combination

9.8 StockPreyPrinter

The printer type to output information about (one or more) preys, with the information aggre-
gated into a convenient grouping, is called ”StockPreyPrinter”. This printer type is defined by
specifying the preys, areas, age groups, length groups and timesteps of interest. The file format
for this component is given below:

[component]
type stockpreyprinter
preynames <vector of the names of the preys>
printfile <name for the output file to be created>
areaaggfile <area aggregation file specifying areas>
ageaggfile <age aggregation file specifying ages>
lenaggfile <length aggregation file specifying lengths>
precision <precision to be used in the output file>
yearsandsteps <ActionAtTime to determine when to print>

78

9 Print Files

Note that this printer type can aggregate more than one prey into a combined pseudo prey for
the output file.

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

The output that is generated from this printer type is a file containing the following information
for all the preys specified on the <preynames> line:

year-step-area-age-length-number-biomass

where:
<area> is the label for the area from the area aggregation file
<age> is the label for the age group from the age aggregation file
<length> is the label for the length group from the length aggregation file
<number> is the total population consumed for that timestep/area/age/length combination
<biomass> is the total biomass consumed for that timestep/area/age/length combination

9.9 PredatorPreyPrinter

The printer type to output detailed information about predator-prey combinations, with the in-
formation aggregated into a convenient grouping, is called ”PredatorPreyPrinter”. This printer
type is defined by specifying the predators, preys, areas, age groups, length groups and timesteps
of interest. The file format for this component is given below:

[component]
type predatorpreyprinter
predatornames <vector of the names of the predators>
preynames <vector of the names of the preys>
areaaggfile <area aggregation file specifying areas>
ageaggfile <age aggregation file specifying prey ages>
lenaggfile <length aggregation file specifying prey lengths>
printfile <name for the output file to be created>
precision <precision to be used in the output file>
yearsandsteps <ActionAtTime to determine when to print>

Note that this printer type can aggregate more than one predator into a combined pseudo preda-
tor, and more than one prey into a pseudo prey, for the output file.

The optional <precision> value is used to specify the number of digits to be used when printing
the information to the specified output file, overriding the default settings for this printer type.

The output that is generated from this printer type is a file containing the following predation
information for all the predators specified on the<predatornames> line, consuming all the preys
specified on the <preynames> line:

year-step-area-age-length-number-biomass-mortality

where:
<age> is the label for the prey age group from the age aggregation file
<length> is the label for the prey length group from the length aggregation file
<number> is the number consumed for that timestep/area/age/length combination
<biomass> is the biomass consumed for that timestep/area/age/length combination
<mortality> is the effective annual mortality induced in the prey by the predation for that
timestep/area/age/length combination

79

9 Print Files

9.10 LikelihoodPrinter

The printer type to output detailed information about a likelihood component is called ”Likeli-
hoodPrinter”. This printer type is defined by specifying the likelihood component and timesteps
of interest. The file format for this component is given below:

[component]
type likelihoodprinter
likelihood <name of the likelihood component>
printfile <name for the output file to be created>

The output that is generated from this printer type is a file containing the internal model infor-
mation for the likelihood component specified on the <likelihood> line, in the same format as
the data in the input file for that component, allowing the user to easily compare the modelled
data to the input data. The exact format of this output file will vary according to the likelihood
component chosen. Some examples of output are:

1. CatchDistribution likelihood component (see section ??)

year-step-area-age-length-number

2. CatchStatistics likelihood component (see section ??)

year-step-area-age-number-mean[-stddev]

3. SurveyIndices likelihood component (see section ??)

year-step-area-index-number

9.11 LikelihoodSummaryPrinter

The printer type to output summary information about all the likelihood components that are
in use for the current simulation is called ”LikelihoodSummaryPrinter”. The file format for this
component is given below:

[component]
type likelihoodsummaryprinter
printfile <name for the output file to be created>

The output that is generated from this printer type is a file containing summary information for
all the likelihood components that have been defined for the current simulation:

year-step-area-component-weight-score

where:
<component> is the name of the likelihood component
<weight> is the weight of the likelihood component
<score> is the score from the likelihood component for that timestep/area combination

80

Chapter 10

Parameter File

The parameter file is used to specify the initial values for the switches that are to be used in the
Gadget model (see What Does The # Mean?, section ??). This file is specified by a ”-i<filename>”
command line option when Gadget is started, for example, this would take the parameter infor-
mation from a file called ”inputfile.txt”:

gadget -s -i inputfile.txt

This file contains a list of all the switches, their initial value, the lower and upper bounds and a
flag to note whether the optimiser should optimise that switch or not. The first line of this file
must contain the column headings, and then subsequent lines should list all switches that are
used. An example of this file format is shown below:

switch value lower upper optimise
<name> <value> <lower> <upper> <0 or 1> ; 1 to optimise this parameter

Note that if Gadget is performing a simulation run, then the ”optimise” column is still required,
although the value of the optimise flag will have no affect on the outcome of the simulation.

In some cases an initial value for a parameter is not known, or a random starting point is wanted
(for example, to ensure that the value of the starting point has little affect on the outcome of
the optimisation). This is done by specifying the keyword ”random” instead of an initial value,
which will ensure that Gadget will set the initial value for that parameter to a random point
within the bounds. This is shown in the example below, where the initial value for the parameter
”age2” will be set to a random point between 1 and 10:

age2 random 1 10 1 ; random value between 1 and 10

81

10 Parameter File

82

Chapter 11

Optimisation File

The optimisation file is used to specify the type of optimisation to be used, along with any param-
eters that are needed for the optimisation algorithm. This file is specified by a ”-opt<filename>”
command line option when Gadget is started, for example, this would take the optimisation
information from a file called ”optinfo.txt”:

gadget -l -opt optinfo.txt

There are three types of optimisation algorithms currently implemented in Gadget - these are
one based on the Hooke & Jeeves algorithm, one based on the Simulated Annealing algorithm
and one based on the Broyden-Fletcher-Goldfarb-Shanno (”BFGS”) algorithm. These algorithms
are described in more detail in the following sections. Gadget can also combine two or more of
these algorithms into a single hybrid algorithm, that should result in a more efficient search for
an optimum solution.

All the optimisation techniques used by Gadget attempt to minimise the likelihood function.
That is, they look for the best set of parameters to run the model with, in order to get the best
fit according to the likelihood functions you have specified. Thus, the optimiser is attempting to
minimize a single one-dimensional measure of fit between the model output and the data, which
can lead to unexpected results.

The optimisation process will tend to produce realistic values for the most significant parameters
(typically growth, recruitment in large year classes and fishing selectivity) before finding realistic
values for less significant parameters. It should be noted that the parameters governing recruit-
ment and growth in the last few years with data in a simulation will be among the last to settle
on realistic values. It is important to ensure that an optimum solution has been reached before
accepting the model, especially if the model is to be used to predict the population into the future
or to examine the strength of the last few year classes.

11.1 Hooke & Jeeves

11.1.1 Overview

Hooke & Jeeves is a simple and fast optimising method, but somewhat unreliable, and it is often
described as a ’hill climbing’ technique. From the initial starting point the algorithm takes a
step in various ’directions’, and conducts a new model run. If the new likelihood score is better
than the old one then the algorithm uses the new point as it’s best guess. If it is worse then the
algorithm retains the old point. The search proceeds in series of these steps, each step slightly
smaller than the previous one. When the algorithm finds a point which it cannot improve on
with a small step in any direction then it accepts this point as being the ’solution’, and exits.

83

11 Optimisation File

It can be seen that this renders the scheme vulnerable to producing local solutions, accepting
a local dip as being the solution even if a better solution exists elsewhere, beyond a local ’hill’
that the algorithm cannot see past. In order to combat this tendency it is strongly recommended
that you re-run the optimisation, using the final point of one run as the start of the next. This will
effectively re-set the searching step size to large steps, and give Gadget a chance of escaping from
local solutions. Finding the same result twice in a row does not guarantee it is the best possible
solution, but finding different results certainly indicates that the larger result is not the solution
you are seeking.

The Hooke & Jeeves algorithm used in Gadget is derived from that originally presented by R.
Hooke and T. A. Jeeves, ”Direct Search Solution of Numerical and Statistical Problems” in the
April 1961 (Vol. 8, pp. 212-229) issue of the Journal of the ACM, with improvements presented
by Arthur F Kaupe Jr., ”Algorithm 178: Direct Search” in the June 1963 (Vol 6, pp.313-314) issue
of the Communications of the ACM.

Hooke & Jeeves is the default optimisation method used for Gadget, and will be used if no opti-
misation information file is specified.

11.1.2 File Format

To specify the Hooke & Jeeves algorithm, the optimisation file should start with the keyword
”[hooke]”, followed by (up to) 4 lines giving the parameters for the optimisation algorithm. Any
parameters that are not specified in the file are given default values, which work reasonably well
for simple Gadget models. The format for this file, and the default values for the optimisation
parameters, are shown below:

[hooke]
hookeiter 1000 ; number of hooke & jeeves iterations
hookeeps 1e-04 ; minimum epsilon, hooke & jeeves halt criteria
rho 0.5 ; step length adjustment factor
lambda 0 ; initial value for the step length

11.1.3 Parameters

hookeiter

This is the maximum number of Gadget model runs that the Hooke & Jeeves algorithm will use
to try to find the best solution. If this number is exceeded, Gadget will select the best point found
so far, and accept this as the ’solution’, even though it has not met the convergence criteria. A
warning that Gadget has stopped without finding a solution that meets the convergence criteria
will be printed.

hookeeps

This is the criteria for halting the Hooke & Jeeves algorithm at a minimum, and accepting the
current point as the ’solution’. The algorithm has ”converged” when the size of each step in
the search has been reduced to less than this value, and no further improvements can be made.
This means that each parameter in the Gadget model is less than hookeeps from their value at
the (local) optimum. Larger values of hookeeps give a quicker running time, but a less accurate
estimate of the minimum. Conversely, smaller values will give a longer running time, but a more
accurate estimate of the minimum.

84

11 Optimisation File

rho

This is the resizing multiplier for the step length of the search made by the algorithm. The Hooke
& Jeeves algorithm works by taking ”steps” from one estimate of a optimum, to another (hope-
fully better) estimate of the optimum. Taking big steps gets to the minimum more quickly, at the
risk of ’stepping over’ an excellent point. When no improvements to the minimum can be made
by taking steps of the current length, the step length is reduced by multiplying it by rho.

Small values of rho correspond to big step length changes, which make the algorithm run more
quickly. However, there is a chance that these big changes will accidentally overlook a promis-
ing point, leading to non-convergence. Larger values of rho correspond to smaller step length
changes, which force the algorithm to carefully examine nearby points instead of optimistically
forging ahead, which improves the probability of convergence. The value of rho must be between
0 and 1.

lambda

This is the initial value for the size of the steps in the search, which will be used for the the first
search, before any modification to the step length. All the parameters in the Gadget model are
initially scaled so that their value is 1, and the initial search will then look at the points 1± λ for
the next optimum. Setting lambda to zero will set the initial value for the step length equal to
rho. The value of lambda must be between 0 and 1.

11.2 Simulated Annealing

11.2.1 Overview

Simulated Annealing is a global optimisation method that distinguishes between different local
minimum. From the initial starting point the algorithm takes a random step in various directions,
and conducts a new model run. If the new likelihood score is better than the old one then the
algorithm uses the new point as it’s best guess. If it is worse then the algorithm may accept
this point, based on the probabilistic ”Metropolis Criteria”, and thus the algorithm can escape
from a local minimum. The search proceeds in series of these steps, with the point that gives the
overall lowest likelihood score is stored as a ”best point”. The algorithm exits when a stable point
is found which cannot be improved on with a small step in any direction, and the Metropolis
Criteria rejects all the steps away from the current best point. The best point is then accepted as
being the ’solution’.

The Metropolis Criteria will accept a move in an uphill direction (ie. a point with a worse likeli-
hood score) based on a function of both the size of the move and a parameter termed ”tempera-
ture”, and is given in equation ?? below:

M = e

−∆F

t

P =

{
1 if M > r
0 otherwise

(11.1)

where:
< ∆F > is the change in likelihood score
< t > is the ”temperature” of the algorithm
< r > is a random number between 0 and 1

Note that when the ”temperature” is very high (t → ∞), the Metropolis Criteria will always
accept any ’uphill’ move, and the Simulated Annealing algorithm will simplify to a form of a

85

11 Optimisation File

random search algorithm. Conversely, when the temperature is very low (t→ 0), the Metropolis
Criteria will always reject any ’uphill’ move, and the Simulated Annealing algorithm will sim-
plify to a form of a hill-climbing algorithm, similar to Hooke & Jeeves. By slowly reducing the
temperature of the algorithm, the number of uphill moves that are accepted are reduced and the
algorithm will find a minimum.

The terminology for the Simulated Annealing algorithm comes from a metaphor with the ther-
modynamic process of cooling molten metals. At very high temperatures, the atoms in molten
metals move very fast, and slow considerably at lower temperatures. If the metal is cooled slowly
(termed ”annealing”), the atoms have time to line up to form a highly ordered, strong, crystalline
structure. If the metal is cooled too quickly (”quenching”) the resulting solid will have a weaker,
less ordered, structure.

In comparison to the Hooke & Jeeves optimisation algorithm, where Hooke & Jeeves performs
a ’local’ stepwise search, Simulated Annealing searches much more widely over the surface in
order to find the best point. By doing this it is less likely than Hooke & Jeeves to be fooled by a
local minimum, and more likely to home in on the true optimum. However the price to paid for
doing this is that it can take considerably more computer time to reach a solution.

The Simulated Annealing algorithm used in Gadget is derived from that presented by Corana
et al, ”Minimising Multimodal Functions of Continuous Variables with the ’Simulated Anneal-
ing’ Algorithm” in the September 1987 (Vol. 13, pp. 262-280) issue of the ACM Transactions on
Mathematical Software and Goffe et al, ”Global Optimisation of Statistical Functions with Sim-
ulated Annealing” in the January/February 1994 (Vol. 60, pp. 65-100) issue of the Journal of
Econometrics.

11.2.2 File Format

To specify the Simulated Annealing algorithm, the optimisation file should start with the key-
word ”[simann]”, followed by (up to) 11 lines giving the parameters for the optimisation algo-
rithm. Any parameters that are not specified in the file are given default values, which work
reasonably well for simple Gadget models. The format for this file, and the default values for the
optimisation parameters, are shown below:

[simann]
simanniter 2000 ; number of simulated annealing iterations
simanneps 1e-04 ; minimum epsilon, simann halt criteria
t 100 ; simulated annealing initial temperature
rt 0.85 ; temperature reduction factor
nt 2 ; number of loops before temperature adjusted
ns 5 ; number of loops before step length adjusted
vm 1 ; initial value for the maximum step length
cstep 2 ; step length adjustment factor
lratio 0.3 ; lower limit for ratio when adjusting step length
uratio 0.7 ; upper limit for ratio when adjusting step length
check 4 ; number of temperature loops to check

11.2.3 Parameters

simanniter

This is the maximum number of Gadget model runs that the Simulated Annealing algorithm will
use to try to find the best solution. If this number is exceeded, Gadget will select the best point
found so far, and accept this as the ’solution’, even though it has not met the convergence criteria.
A warning that Gadget has stopped without finding a solution that meets the convergence criteria
will be printed.

86

11 Optimisation File

simanneps

This is the criteria for halting the Simulated Annealing algorithm at a minimum, and accepting
the current point as the ’solution’. The algorithm has ”converged” if the point found at the end
of a temperature loop is within simanneps of the best point, and is also within simanneps of the
point found at the end of the last ’check’ temperature loops. This will mean that during each
of the last ’check’ temperature loops, the accepted point has moved less than simanneps away
from the overall best point, showing that the best point found so far is stable. Lower values for
simanneps will give a more stable estimate of the minimum, at the cost of a longer running time.
Note that the convergence criteria is only checked at the end of each temperature loop.

t

This is the initial value for the ”temperature” of the Simulated Annealing algorithm, used to
control the speed of the convergence of the algorithm, using the Metropolis Criteria given in
equation ?? above. High values for the temperature (t� ∆F) will mean that most of the uphill
moves are accepted, and the algorithm will be performing a random search, which is compu-
tationally very intensive. Low values for the temperature (t � ∆F) will mean that most of the
uphill moves are rejected and the algorithm will be performing an inefficient local search.

rt

This is the temperature reduction factor, used to lower the temperature of the algorithm as it
moves closer to the minimum. Higher values here will mean that the temperature is reduced
slowly, which will mean that the algorithm is will examine the search area more thoroughly,
leading to better convergence at a cost of much higher computational time. Lower values of rt
will mean that the temperature is reduced quickly, leading to faster convergence, possibly to a
local minimum that the algorithm cannot escape from (this is analogous to ”quenching” in the
thermodynamic metaphor). The value of rt must be between 0 and 1.

nt

This is the number of loops that the algorithm will perform before reducing the temperature
parameter. Higher values here will mean that the algorithm will explore the current search area
more thoroughly, improving the chance of finding a global minimum, at the cost of considerably
higher computational time. Conversely, lower values will mean that the current search area is
not explored as thoroughly, with a corresponding reduction in computation time. Note that each
temperature loop consists of all of the ”ns” step loops.

ns

This is the number of loops that the algorithm will perform before adjusting the maximum step
length parameter. The maximum step length is periodically adjusted so that approximately half
of all moves are accepted, since too many, or too few, accepted moves is a waste of computational
effort.

When the algorithm adjusts the maximum step length, the ratio of accepted moves to rejected
moves since the last adjustment of the maximum step length is taken into account. If more moves
are accepted than rejected, the maximum step length will fall and so the search will focus on the
most promising area. However, if more moves are rejected that accepted, the maximum step
length will rise so the search area will widen.

87

11 Optimisation File

vm

This is the initial maximum step length for the Simulated Annealing algorithm. The maximum
step length will get adjusted during the optimisation process. Note that each of the steps taken by
the Simulated Annealing algorithm are not uniform, and will have a random length of between
zero and the maximum step length.

It is important to note that unlike the Hooke & Jeeves algorithm, the parameters are not scaled
during the optimisation process, and so the maximum step length should be selected so that the
initial search area will cover the area of interest. For efficient use of the Simulated Annealing
algorithm, it is recommended that the parameters to be estimated are scaled (by the user) so that
they are all approximately the same order of magnitude.

cstep, lratio and uratio

These parameters control how the maximum step length for the Simulated Annealing algorithm
is adjusted, at the end of each of the ”ns” step loops. The algorithm keeps track of the num-
ber of moves that are accepted and rejected for each direction, and then adjusts the value of the
maximum step length for each direction so that the ratio of accepted to rejected moves is approx-
imately 50:50. The maximum step length for each direction is adjusted according to equation ??
below:

vmi =


vmi ∗ (1 + C(Ri−U)

L) if Ri > U

vmi/(1 + C(L−Ri)
L) if Ri < L

vmi otherwise
(11.2)

where:
< Ri > is the ratio of accepted moves for direction i
< C > is the value of the ”cstep” parameter
< U > is the value of the ”uratio” parameter
< L > is the value of the ”lratio” parameter

check

This is the number of temperature loops that the Simulated Annealing algorithm will check to
confirm that the current best point that has been found is a stable minimum, so that it can be
accepted as a solution.

11.3 BFGS

11.3.1 Overview

BFGS is a quasi-Newton optimisation method that uses information about the gradient of the
function at the current point to calculate the best direction to look in to find a better point. Us-
ing this information, the BFGS algorithm can iteratively calculate a better approximation to the
inverse Hessian matrix, which will lead to a better approximation of the minimum value.

From an initial starting point, the gradient of the function is calculated and then the algorithm
uses this information to calculate the best direction to perform a linesearch for a point that is ”suf-
ficiently better”. The linesearch that is used in Gadget to look for a better point in this direction is
the ”Armijo” linesearch. The algorithm will then adjust the current estimate of the inverse Hes-
sian matrix, and restart from this new point. If a better point cannot be found, then the inverse
Hessian matrix is reset and the algorithm restarts from the last accepted point.

88

11 Optimisation File

For a point at a stable minimum, the magnitude of the gradient vector will be zero, since there is
no direction that the algorithm can move in to find a better local point. However, finding such
a point using an iterative process can take an infinite number of steps, so the algorithm exits
when the magnitude of the gradient vector is less than a small number. The current point is then
accepted as being the ’solution’.

The ”Armijo” linesearch calculates the stepsize that is to be used to move to a point that is ”suffi-
ciently better”, along the search direction vector calculated from the gradient, to be βn, where n
is the first integer that satisfies the Armijo rule given by inequality ?? below:

f(x)− f(x+ βnd) ≥ −σβnd∇f(x)T (11.3)

where:
< ∇f(x) > is the gradient of the function at the current point
< d > is the search direction vector

In comparison to the other optimising algorithms that are currently implemented in Gadget,
BFGS performs a local search, and so it doesn’t cover the wide search area that the Simulated
Annealing algorithm can use to look for an optimum. BFGS will usually take more computer
time to find an optimum than the Hooke & Jeeves algorithm, since numerically calculating the
gradient of the function is computationally very intensive. However, the optimum found by the
BFGS algorithm will usually be better than that found by the Hooke & Jeeves algorithm, since a
gradient search method is usually more accurate than a stepwise search method.

The BFGS algorithm used in Gadget is derived from that presented by Dimitri P Bertsekas, ”Non-
linear Programming” (2nd edition, pp22-61) published by Athena Scientific. The forward differ-
ence gradient algorithm used to calculate the gradient is derived from that presented by Dennis
and Schnabel, ”Numerical Methods for Unconstrained Optimisation and Nonlinear Equations”
(”Classics” edition, published by SIAM).

11.3.2 File Format

To specify the BFGS algorithm, the optimisation file should start with the keyword ”[bfgs]”, fol-
lowed by (up to) 7 lines giving the parameters for the optimisation algorithm. Any parameters
that are not specified in the file are given default values, which work reasonably well for simple
Gadget models. The format for this file, and the default values for the optimisation parameters,
are shown below:

[bfgs]
bfgsiter 10000 ; number of bfgs iterations
bfgseps 0.01 ; minimum epsilon, bfgs halt criteria
sigma 0.01 ; armijo convergence criteria
beta 0.3 ; armijo adjustment factor
gradacc 1e-06 ; initial value for gradient accuracy
gradstep 0.5 ; gradient accuracy adjustment factor
gradeps 1e-10 ; minimum value for gradient accuracy

11.3.3 Parameters

bfgsiter

This is the maximum number of Gadget model runs that the BFGS algorithm will use to try to
find the best solution. If this number is exceeded, Gadget will select the best point found so far,
and accept this as the ’solution’, even though it has not met the convergence criteria. A warning
that Gadget has stopped without finding a solution that meets the convergence criteria will be
printed.

89

11 Optimisation File

bfgseps

This is the criteria for halting the BFGS algorithm at a minimum, and accepting the current point
as the ’solution’. The algorithm has ”converged” if the magnitude of the gradient vector is less
than bfgseps. Lower values of bfgseps will give a better estimate of the minimum, at the cost
of a considerably increased running time. At the true minimum, the magnitude of the gradient
vector will be zero, since there would be no direction for the algorithm to move to, but this point
could take an infinite number of iterations to find.

sigma

This is the criteria for stopping the Armijo linesearch at a point that is ”sufficiently better”, and
recalculating the gradient of the function at this new point. Lower values of sigma will increase
the size of the acceptance region of the Armijo linesearch (by relaxing the condition for the in-
equality, see equation ?? above), which will mean that the linesearch will stop earlier, leading to
larger steps by the BFGS algorithm. Conversely, higher values of sigma will decrease the size
of the acceptance region, which will mean that the BFGS algorithm will take smaller steps. The
value of sigma must be between 0 and 1, and should be close to zero.

beta

This is the adjustment factor for the Armijo linesearch, used to calculate the size of the step taken
by the linesearch to find the next point. Lower values of beta will mean that the size of the step
that the algorithm tries to take in the direction of the gradient vector is smaller, but the step is
more likely to be in the acceptance region. Conversely, higher values of beta will result in larger
steps being tried, but these steps are more likely to be rejected since they may be outside the
acceptance region. The value of beta must be between 0 and 1.

gradacc, gradstep and gradeps

These parameters control the accuracy that is used for the gradient calculations. The gradient of
the function is calculated numerically by Gadget using a forward difference algorithm, as shown
in equation ?? below:

∇f(x) ≈ f(x+ δx)− f(x)

δx
(11.4)

where:
< δ > is the value of the ”gradacc” parameter

When the BFGS algorithm is reset (that is, if the Armijo linesearch fails to find a better point)
the gradient accuracy parameter is made smaller to increase the level of accuracy that is used
in the gradient calculations. This is done by multiplying the gradacc parameter by the gradstep
parameter, which is a simple reduction factor (and as such must be between 0 and 1). To prevent
the gradacc parameter getting too small, the BFGS algorithm will stop once the value of gradacc
is less that the value of gradeps. Both gradacc and gradeps must be between 0 and 1, with
gradeps smaller than gradacc, and the gradient calculations are more accurate when the gradacc
parameter is very small.

11.4 Combining Optimisation Algorithms

11.4.1 Overview

This method attempts to combine the global search of the Simulated Annealing algorithm and
the more rapid convergence of the local searches performed by the Hooke & Jeeves and BFGS

90

11 Optimisation File

algorithms. It relies on the observation that the likelihood function for many Gadget models
consists of a large ’valley’ in which the best solution lies, surrounded by much more ’rugged’
terrain.

A period of Simulated Annealing at the start of the optimisation run serves to move the search
into this valley, at which point the Simulated Annealing algorithm becomes inefficient so the
Hooke & Jeeves algorithm and/or the BFGS algorithm takes over and homes in on a solution
within that valley. Hopefully the Simulated Annealing algorithm will have moved the current
point to the correct side of any ’hills’ to avoid the local searches becoming trapped into an unre-
alistic local minimum.

11.4.2 File Format

To specify a combination of optimisation algorithms, the optimisation file should simply list the
algorithms that should be used, along with the parameters for each optimisation algorithm. Any
parameters that are not specified in the file are given default values, which work reasonably
well for simple Gadget models. As an example, the format for this file used to specify all three
optimisation algorithms, and the default values for the optimisation parameters, is shown below:

[simann]
simanniter 2000 ; number of simulated annealing iterations
simanneps 1e-04 ; minimum epsilon, simann halt criteria
t 100 ; simulated annealing initial temperature
rt 0.85 ; temperature reduction factor
nt 2 ; number of loops before temperature adjusted
ns 5 ; number of loops before step length adjusted
vm 1 ; initial value for the maximum step length
cstep 2 ; step length adjustment factor
lratio 0.3 ; lower limit for ratio when adjusting step length
uratio 0.7 ; upper limit for ratio when adjusting step length
check 4 ; number of temperature loops to check
[hooke]
hookeiter 1000 ; number of hooke & jeeves iterations
hookeeps 1e-04 ; minimum epsilon, hooke & jeeves halt criteria
rho 0.5 ; step length adjustment factor
lambda 0 ; initial value for the step length
[bfgs]
bfgsiter 10000 ; number of bfgs iterations
bfgseps 0.01 ; minimum epsilon, bfgs halt criteria
sigma 0.01 ; armijo convergence criteria
beta 0.3 ; armijo adjustment factor
gradacc 1e-06 ; initial value for gradient accuracy
gradstep 0.5 ; gradient accuracy adjustment factor
gradeps 1e-10 ; minimum value for gradient accuracy

It should be noted that the optimisation algorithms will be performed in the order that they are
specified in the input file, so for this example the order will be: first Simulated Annealing, second
Hooke & Jeeves and finally BFGS.

11.4.3 Parameters

The parameters for this combined optimisation algorithm are the same as for the individual algo-
rithms, and are described in sections ?? (for the Hooke & Jeeves parameters), ?? (for the Simulated
Annealing parameters) and ?? (for the BFGS parameters).

91

11 Optimisation File

11.5 Repeatability

The optimisation algorithms used by Gadget contain a random number generator, used to ran-
domise the order of the parameters (to ensure that the order of the parameters has no effect on
the optimum found) and to generate the initial direction chosen by the algorithm to look for a
solution. For the Simulated Annealing algorithm, this is also affects the Metropolis criteria used
to accept any changes in an ’uphill’ direction.

The use of a random number generator means that it is unlikely that two optimising runs will
produce exactly the same ’optimum’, even if they start from the same point (although it is hoped
that the optima would be very similar if a stable starting point was chosen). This causes a problem
with repeatability, since there is no guarantee that an optimising run can be repeated. However,
it is possible to ’seed’ the random number generator with an integer to avoid this problem. To
specify a seed for the random number generator, an extra line must be added to the optimisation
file, as shown below:

seed n ; seed the random number generator with n

It is also possible to specify the value that is used to seed the random number generator from
the command line, by starting Gadget with the ”-seed <number>” switch. It should be noted
that any value for the seed that is specified in the optimisation file will override the value that is
specified as a command line option.

92

Chapter 12

Output Files

The model output files contain information about the optimisation process (and not information
about the stocks in the model - see the section on the Print Files, section ??, for information
on these). The output files are specified by some of the commandline parameters used to start
Gadget. There are three types of output file.

12.1 Parameter Output

The parameter output file is automatically generated by Gadget every time that Gadget is run.
If Gadget is not started with the ”-p <filename>” option, this file will be called ”params.out”.
This file contains information about the values of the switches at the end of the Gadget run, in
the same format as for the column output file. In the header of this file there will be information
about the Gadget run, followed by the final overall likelihood score and the total number of
iterations. There is then the information about the switches used in the Gadget run - the name,
value, lower bound, upper bound and whether the switch is to be optimised.

This file is written in the same format as the parameter input file, and it can be used as the starting
point for a subsequent Gadget run.

12.2 Likelihood Output

The likelihood output file is generated when Gadget is started with the ”-o <filename>” option,
and the output is written to the file specified after that option, so, for example, this would write
the output to a file called ”likelihood.txt”:

gadget -l -o likelihood.txt

The likelihood output file is split into three sections, separated by a line containing a brief com-
ment. The first section lists the names of the switches used in the model, together with some
information about where that switch is used.

The second part of the likelihood output file contains information about the likelihood compo-
nents used in the optimisation of the model. The names of the components are listed, along with
an identifier to the type and the weight assigned to the component.

The final part of the likelihood output file contains the output from the optimisation process.
There is a single line for each iteration of the optimisation, containing the iteration number fol-
lowed by a tab character, then the value of each switch, followed by a gap (2 tab characters),

93

12 Output Files

followed by the value of each of the likelihood components, followed by another gap (again, 2
tab characters) followed by the overall likelihood score for that iteration.

For a long optimisation run, this can result in this file being quite large. The default option is for
this line to be written for each iteration, but this can be changed using the ”-print <number>”
option, which will only write out this line every <number> iterations, as shown in the example
below:

gadget -l -o likelihood.txt -print 10

which will set Gadget to write this information, to the file ”likelihood.txt”, after every 10th itera-
tion.

12.3 Log Output

The log output file is generated when Gadget is started with the ”-log <filename>” option, and
the output is written to the file specified after that option, so, for example, this would write the
output to a file called ”gadget.log”:

gadget -log gadget.log

The log file contains a listing of the actions that Gadget is performing, as those actions are being
performed - an entry can be made whenever data is read from a file, or a likelihood score is
calculated, for example. The log file is of most use when initially setting up and debugging a
Gadget model, since it makes it easy to trace what Gadget is doing, so, for example, the details of
the last actions that were performed before displayed a warning message are recorded.

This log file that is generated can be a large file if Gadget is performing an optimising run. It is
possible to control the amount of information that is written to the log file using the ”-loglevel
<number>” command line option. The valid values for the loglevel number, and the associated
meanings, are given in the list below:

loglevel meaning
0 no output, only used in conjunction with the Paramin optimiser
1 output informational messages only (cannot be set from the command line)
2 also output error messages (default value for an optimising run)
3 also output warning messages (default value for a simulation run)
4 also output debug messages (only useful when debugging Gadget code)
5 also output detailed messages (default value if a log file is specified)

Examples of valid loglevel values include:

1. specifying a log file (called ”gadget.log”) for an optimising run that only includes informa-
tional and error messages (and not the more detailed messages that would be written to the
log file by default)

gadget -l -log gadget.log -loglevel 2

2. specifying a log file for a simulation run that includes error and warning messages (note
that it is not possible to disable the warning messages during a simulation run)

gadget -s -log gadget.log -loglevel 3

94

Chapter 13

Paramin

This chapter describes how to run Gadget with paramin which runs the optimization routines in
parallel. The current version of paramin is implemented with MPI, Message passing interface,
which handles all the message passing between the master process, paramin, and the slave pro-
cesses, Gadget instances. The setup is very similar to a normal Gadget run, all the Gadget input
files are the same, it’s only the execution which differs.

13.1 Installation

In order to begin one must first download and install a version of MPI. This version of paramin is
made with an implementation of MPI-2 called OPEN-MPI, one can download the MPI library and
a wrapper compiler called mpic++ from their website www.open-mpi.org. Now before trying
to run paramin make sure you have the newest version of Gadget downloaded. Now open
the Makefile with your favorite text-editor and uncomment the section referring to a Gadget
Network version and comment out the lines which refer to an install without MPI. Now you
should open a console window and navigate to the folder where you saved Gadget. Make sure
you have the make utility installed, to check if so you can write the following in the console:

which make

If it is installed the console should prompt you with something similar to the following

/usr/bin/make

Which is the path to the executable, if the console outputs

make: Command not found.

The make utility is either not installed or the executable is not found in the PATH global variable,
note that make comes with almost all modern UNIX systems. Now you can simply type make
in the console and the program should be compiled and you get an executable, let’s assume it’s
called gadget-PARA. Now paramin is dependent on some Gadget objects, so you now need to
type the following in the console:

make libgadgetinput.a

Now you are ready to start compiling paramin. Download the newest version of paramin and
open the paramin folder in the console. You need to edit the Makefile and add the path to the
directory where you installed Gadget as described above. Now you can run the make command
to compile paramin and get an executable, let’s assume it’s called paramin.

95

13 Paramin

13.2 Running paramin

To be able to run paramin it’s ideal to add the path of the two executables, gadget-PARA and
paramin to the global variable PATH. If you’re running a bash console you can edit the .bashrc
to add it, you can also copy the executables to the directory of PATH, but you probably need
root access to do that. Now you can call the functions from the console. Here is an example of a
typical paramin run:

mpirun paramin -i <filename> -opt <filename> -network <filename>
-o <filename> -function gadget-PARA -s -n -i <filename> > <filename>

Now because paramin is implemented with MPI we need to call mpirun when we run it. Now
there are several files we need to call and a few switches we need. The -i <filename> switch
tells paramin which file holds the parameters and their initial values, this file is the same as the
params.in file used in Gadget (see Parameter Files, chapter ??, for more information on the for-
mat of this file). The -i switch with the same <filename> has to be on Gadget as well.

Next we need to specify the optimization parameters with the -opt <filename> switch, the
preceding file contains the information of which type of optimization run to perform for more in-
formation see Parameter Files, chapter ??, it’s the same format as the optimization file for Gadget.

The next switch tells paramin how many subprocesses paramin will spawn, this switch is not
in Gadget. Note that having at least 8 subprocesses will greatly improve the time of the run, but
there is no need to let the number of subprocesses exceed the number of parameters, optimally it
should be best to have as many subprocesses as the number of parameters, but then one should
have access to at least that many processing cores. A sample file which tells paramin to spawn 30
subprocesses looks like this:

;
;Sample network file
;
numproc 30

The -o <filename> switch specifies which file to output the optimized parameters. This file
will also contain information about the optimization run, how much overall time was taken and
how much time was taken for each optimizing algorithm. The format of this outputted file is the
same as the one used as input, so the output can be used as a starting point for later runs.

The -function gadget-PARA -switch tells paramin the name of the executable it will spawn
as it’s subprocess, in this case it’s the gadget-PARA executable we made earlier. The user can also
make his own function to optimize with paramin. Now Gadget also needs parameters, we pass
to it the -s and -n switch to make it go to network mode, then Gadget knows it’s running with
paramin. Finally we can add > <filename> to specify a file for the output of the run, this is not
necessary but recommended.

13.2.1 Additional information

If you’re running a potentially very long run on a remote host it’s recommended to use the
screen utility, for more information type man screen in the console. It allows you to de-
tach the session so it lives after you log out of your SSH session. In short you can type screen
at the console to open a new screen session. Now run the script or program you want to run
and type ctrl-a d, and you detach the session. Now you can safely exit from the remote host.
To retrieve your session on your next login simply type screen -r and you enter the screen
session, then you can close it by typing exit in the console. Another option is to run the desired
command with the nohup prefix, it makes the command immune to hangups.

96

13 Paramin

As stated earlier paramin can be used to optimize almost any function which can be defined
within the C++ language. The rosenbrock function is oftenly used to test nonlinear optimization
algorithms because it’s quite challenging for methods which do not rely on the gradient of the
function. A sample rosenbrock function and instruction on how to compile and run it should be
available on the MRI website under paramin. This function can be used as a template for the
optimization of any function definable in the C++ language, future work will be to add a parser
and an R interface, so paramin can be called from within an R session using an R defined function.

Paramin was originally written with PVM, but since PVM is no longer supported it was mi-
grated to MPI. More information on the migration process from PVM to MPI can be found on the
MRI website, there one can also find study on the improvement in time relative to the number of
processes spawned for each optimization routine.

13.2.2 Running paramin on multiple hosts/cluster

As stated above when we run paramin in the console it has to be invoked with the mpirun
command. The mpirun command can take some optional arguments. First of all it can take
the argument -np <numproc> where numproc is the desired number of processes one wants
to start. This argument is not necessary with paramin because we define the number of subpro-
cesses in the network file and paramin spawns them dynamically. The next optional argument
we will discuss is the−−hostfile <filename>. <filename> is a name of a file which holds
the name of the hosts in the cluster and how many processors are available on each node. The
authentication in the execution process is done via ssh, so public keys have to be shared to allow
for remote login and execution between hosts. The programs desired to run in parallel have to be
installed on each host for this to work. For more information see the FAQ entries on the OPEN-
MPI webpage, there are more things that need to be taken into consideration. Here is an example
hostfile from the open-mpi FAQ:

This is an example hostfile. Comments begin with
#
The following node is a single processor machine:
comp1

The following node is a dual-processor machine:
comp2.dualcore slots=2

The following node is a quad-processor machine, and we absolutely
want to disallow over-subscribing it:
comp3.quadcore slots=4 max-slots=4

97

13 Paramin

98

Chapter 14

References

Anon. 2002. Development of Structurally Detailed Statistically Testable Models of Marine Popu-
lations (dst2). QLK5-CT1999-01609. Progress Report for 1 January to 31 December 2001. Marine
Research Institute Report No. 87, Marine Research Institute, Reykjavik, Iceland.

Anon. 2003. Development of Structurally Detailed Statistically Testable Models of Marine Popu-
lations (dst2). QLK5-CT1999-01609. Progress Report for 1 January to 31 December 2002. Marine
Research Institute Report No. 98, Marine Research Institute, Reykjavik, Iceland.

Bertsekas, D.P. 1999. Nonlinear Programming. Athena Scientific 2nd edition, pp22-61.

Bogstad, B., Hiis Hauge, K., and Ulltang, Ø. 1997. MULTSPEC - A Multispecies Model for Fish
and Marine Mammals in the Barents Sea. Journal of Northwest Atlantic Fisheries Science. vol 22:
pp317-341.

Bogstad, B., Tjelmeland, S., Tjelta, T. and Ulltang, Ø. 1992. Description of a Multispecies Model
for the Barents Sea (MULTSPEC) and a Study of its Sensitivity to Assumptions on Food Prefer-
ences and Stock Sizes of Minke Whales and Harp Seals. Institute of Marine Research Technical
Report SC/44/O 9, Institute of Marine Research, Bergen, Norway.

Dennis, J.E., and Schnabel, R.B. 1996. Numerical Methods for Unconstrained Optimisation and
Nonlinear Equations. SIAM ”Classics” edition.

Corana, A., Marchesi, M., Martini, C., and Ridella, S. 1987, Minimising Multimodal Functions of
Continuous Variables with the ’Simulated Annealing’ Algorithm. ACM Transactions on Mathe-
matical Software vol 13: pp262-280.

Frøysa, K.G., Bogstad, B., and Skagen, D.W. 2002. Fleksibest - an Age-Length Structured Fish
Stock Assessment Tool with Application to Northeast Arctic Cod (Gadus morhua L.). Fisheries
Research vol 55: pp87-101.

Goffe, W.L., Ferrier, G.D., and Rogers, J. 1994. Global Optimisation of Statistical Functions with
Simulated Annealing Journal of Econometrics. vol. 60: pp65-100.

Hooke, R., and Jeeves, T.A. 1961. Direct Search Solution of Numerical and Statistical Problems.
ACM Journal. vol 8: pp212-229.

Jones, R., and Johnston, C. 1977. Growth, Reproduction and Mortality in Gadoid Fish Species.
Fisheries Mathematics, Academic Press, pp37-62.

99

14 References

Kaupe, A.F. 1963. Algorithm 178: Direct Search. ACM Communications. vol 6: pp313-314.

Stefánsson, G., and Pálsson, Ó.K. 1997. BORMICON. A Boreal Migration and Consumption
Model. Marine Research Institute Report 58, Marine Research Institute, Reykjavik, Iceland.

Tjelmeland, S., and Bogstad, B. 1998. MULTSPEC - A Review of a Multi-Species Modelling Project
for the Barents Sea. Fisheries Research vol 37: pp127-142.

100

Appendix A

Order of Calculations

It is important to understand the order that Gadget performs the calculations, since this could
have an effect on the way the user might structure the model. For each timestep of the simulation,
the order of the calculations is:

1. printing. Optional printing of the model information at the beginning of the timestep, be-
fore any calculations have taken place for this timestep. Note that the default printing takes
places towards the end of the timestep.

2. migration. Move the stocks around between the areas in the model, using migration matri-
ces as described in section ??.

3. consumption. Calculate the predation by, and consumption of, the stocks in the model.
Since a predator can consume more than one prey, and a prey can be consumed by more
than one predator, the consumption calculations take place in 4 stages:

(a) calculate the amount that each predator wants to consume of each prey, assuming that
there is enough prey to meet these demands.

(b) check that each prey is not ”over consumed”, to ensure that no more than 95% of the
available prey biomass is consumed on a single timestep.

(c) adjust the consumption of the predators to avoid overconsumption of the preys.
(d) reduce the population of the preys according to the adjusted amount that the predators

consumed.

Note that the consumption calculations include the ”consumption” of the stocks by any
fleets in the model.

4. natural mortality. Reduce the population of the stocks in the model by removing a propor-
tion due to natural mortality.

5. growth. Calculate any increase in length and weight of the stocks, and move any fish that
will become mature (see section ??) into temporary storage.

6. spawning. Calculate the affect that spawning will have on the adult stocks, and place any
spawned stock into temporary storage.

7. maturation. Add the newly matured fish (calculated as part of the growth update) into the
model. Note that this comes after the mature fish have spawned, which means that a fish
cannot become mature and spawn in the same timestep.

8. recruitment. Add any new recruits to the model, including both the recruits specified di-
rectly and the recruits specified as part of the spawning process. Note that this comes
after the consumption calculations, so that new recruits cannot be consumed on the same
timestep as they have been added into the model.

101

A Order of Calculations

9. straying. Move fish between stocks in the model that are straying, as described in section ??.

10. likelihood comparison. Calculate the likelihood score for each of the individual likelihood
components. Note that most of the likelihood components use data that is based on the
catch by a fleet, which has been calculated as part of the consumption process.

11. printing. Default printing of the model information at the end of the timestep, after the
calculations have taken place for this timestep.

12. ageing. If this is the last timestep of the year, increase the age of the fish in the model. As
part of this process, the oldest age group (the plus group) can move to another stock (see
section ??).

102

Appendix B

Recent Changes

A version of this user guide was printed and published as a Marine Research Institute report,
available from the MRI, Reykjavik (Hafrannsóknastofnunin Fjölrit nr. 120). That published ver-
sion of the user guide described the input file formats for Gadget version 2.1.00. Since the pub-
lication of that report, a number of changes to the Gadget software have been implemented, to
fix any bugs that have been found and to add new features. Some of these changes have resulted
in small changes to the format of the input files, and these user visible changes are summarised
below.

B.1 Gadget version 2.1.01

• removed the need to specify the lengths of the fleets (see section ??)

• added new suitability functions, the Richards suitability function and the Gamma suitabil-
ity function (see section ??)

• added a fleet that uses catch in numbers data (see section ??)

• added an ”energycontent” section for the preys (see section ?? and section ??)

B.2 Gadget version 2.1.02

• simplified the format for the migration data (see section ??)

• added prey preference parameters to allow for a Type III functional response when one
stock is consuming another (see section ??)

B.3 Gadget version 2.1.03

• changed the otherfood file format to specify the biomass of otherfood available, rather than
the density of the otherfood (see section ??)

• added a fleet that extends the LinearFleet to take the different catchability of the various
stocks into account (see section ??)

• added the StockPreyPrinter to the list of available printer classes (see section ??)

• added the PredatorPreyPrinter to the list of available printer classes (see section ??) to re-
place the old PredPreyStdAgePrinter and PredPreyStdLengthPrinter printer classes, which
are no longer supported

103

B Recent Changes

B.4 Gadget version 2.1.04

• removed the need to specify the areas, predators or timesteps when calculating the score
for the Understocking likelihood component (see section ??)

B.5 Gadget version 2.1.05

• added a fleet that implements a simple harvest control rule (see section ??)

• added a survey index likelihood component that can use an index based on acoustic data
(see section ??)

• added a survey index likelihood component that can use an index based on effort data (see
section ??)

• removed the need to specify the timesteps for the LikelihoodPrinter printer class, since the
output is generated on the timesteps that the likelihood components have data for (see
section ??)

• changed the ”half feeding value” format to specify the biomass of the prey, rather than the
density of the prey (see section ??)

B.6 Gadget version 2.1.06

• this version only contains bug fixes, so there are no changes to the format of the input files

104

