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Abstract

This MSc Thesis explores the improvements which can be made when using the Multiple

Coulomb Scattering of cosmic ray muons to create tomographic images of volumes, which

may be otherwise undetectable. Feasible anti-terrorist applications may be obtained only

with a high quality reconstruction algorithm and a short exposure time. This project has

used and improved the algorithm of the CREAM TEA experiment of University College

London (UCL), which relies on a Geant4 simulation of both target and detector and a

Maximum Likelihood Expectation Maximization technique for the image reconstruction.

Improvements in the latter algorithm can be achieved by measuring the muon energy

and adding information about the displacement of the ray. Di�erent ways of measuring

the energies were analysed and two target sizes were inspected for the scattering and

displacement algorithm. The result was a signi�cant reduction of the noise, bringing a

Figure of Merit �ve times larger than the one evaluated with standard methods, together

with shortening the exposure time needed to detect a bomb (e.g. 5 seconds of exposure

time for a 30 cm radius uranium target). These techniques can be adapted for smaller

targets by simply reducing the size of the voxels.
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Introduction

One of the most challenging problems in the area of international security is the control of

large places of interchange, such as ports or train stations.

It is impossible to run high security systems similar to those present in an airport: for

this reason, customs agencies currently employ radiation detectors and X-ray scanners at

border crossings to preventing illicit transport of �ssile material. However, X-ray radiog-

raphy systems have various limitations, due to their potential harming e�ects on people

(they cannot be used on occupied vehicles) and the low penetration of this radiation. This

means that one could hide Special Nuclear Material by combining a small amount of lead

or tungsten, with hydrogenous (polyethylene) and neutron absorbing (lithium or boron)

shielding materials [1].

The cosmic ray muon tomography technique can provide a solution to this problem, by be-

ing able to discriminate between high-Z materials and hence to distinguish �ssile material

from the high-Z shielding.

The choice of using cosmic ray muons is principally due to the fact that they consti-

tute a natural background radiation which is continuously bombarding Earth at a rate of

1 muon per cm2 every minute [2] and it is completely harmless radiation.

In fact, cosmic ray radiation is principally composed of protons that interact in the upper

atmosphere producing "showers" of particles, including pions. The charged pions then

decay producing muons.

Muons passing through matter are slowed down and they can either be absorbed or de-

�ected. The �ux of absorbed muons is related to the density of the material, and measuring

the di�erence in muon �ux enables us to make a radiographic image of the volume. The

�rst muon tomographies performed obtained very good results using only muon absorption

information [3; 4; 5].

Despite the initial success of the absorption technique, the need for more precise results in a

shorter exposure time led to a new approach to muon tomography: scattering information
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began being used.

The trajectory of a charged particle (such as a muon) through any material is the result

of the convolution of many small de�ections due to Multiple Coulomb Scattering from the

positively charged nuclei in the medium. The distribution of the net angular de�ection is

very sensitive to the charge of the atomic nuclei (Z): thus these de�ections can be used to

determine the density of the materials that the charged particles have traversed.

By using this new kind of cosmic ray muon tomography it is possible to reconstruct a 3D

image of a volume to be analysed. Moreover, with regards to the anti-terrorism applica-

tions, it can be used to detect the presence of a high-Z object (such as a bomb), even when

it is shielded by a water tank, a sheep cargo, a steel box or a high-Z material!
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Part I

Background information
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Chapter 1

Cosmic rays and muons passage

through matter

Before going into the description of the muon tomography technique and the CREAM

TEA experiment, an introduction on cosmic rays is needed.

The �rst part of this chapter presents the path of cosmic rays discovery through history,

then their production, spectra and their interaction with the atmosphere which produces

particle "showers".

The second part of the chapter presents a deeper description of the passage of particles

through matter, introducing Multiple Coulomb Scattering, absorption information and the

relation between the energy deposited by a particle and its momentum.

1.1 Cosmic rays: discovery, history and composition

1.1.1 Discovery and history

Cosmic rays are charged particles of unknown extraterrestrial origin which continuously

bombard Earth.

The history of cosmic ray discovery began in 1900 when Elster and Geitel [6], and Wilson

independently, found that pure air in a closed vessel possesses some electrical conductiv-

ity [7]. The year after, Wilson hypothesized that the residual ionization was due to some

strongly penetrating radiation coming from the universe, but he soon rejected this as mere

speculation [7].

Initially, the observed radiation was associated with gamma-ray emission from radioactive

8



elements. Later, in order to clarify the role of the radiation coming from Earth, the mea-

suring devices were lifted to di�erent altitudes - �rst up to the Ei�el tower [7] and then on

balloon �ights.

The 7th of August 1912 is recognized as the date when of cosmic rays were truly discovered:

on that day Hess made his most successful �ight and suggested the following conclusion [7]:

�The results of present observations seem to be most readily explained by the assumption

that a radiation of very high penetrating power enters our atmosphere from above and still

produces in the lowest layers a part of the ionization observed in closed vessel. �

Nonetheless, Hess' theory did not seem very convincing, because a German physicist Kol-

höster [7], believed that the change in ionization rate with increasing height was due

to temperature variations. These doubts vanished around 1925 when Kolhöster himself

con�rmed Hess' hypothesis, calling this radiation Hohenstrahlung (i.e. high altitude ra-

diation) or Hess'sche Strahlung (i.e. Hess radiation), whereas Hess preferred the term

Ultra-gammastrahlung (i.e. Ultra gamma radiation); the name "cosmic ray" was given in

1925 by Millikan [7], referring to fast charged particles of cosmic origin.

Later, sea-level observations of fast charged particles and the geomagnetic e�ect indicated

that at least part of the cosmic ray �ux consists of charged particles. Furthermore, Rossi

demonstrated the ability of these charged particles to create secondary particles [7].

1.1.2 Charge and composition

In 1933, Rossi and Johnson, Alvarez and Compton established in their experiments the

east-west asymmetry with a predominance of positive particles1. Even though, initially,

these positively charged particles were believed to be positrons, between 1938 and 1940

it was clari�ed that the dominant particles in the composition of primary cosmic rays

are protons. Basically, the electron-positron component of cosmic rays produces showers,

whereas protons of the same energy do not: using devices with several lead-separated

counters, it was found that primary particles produce almost no showers [7].

Studies in 1950-1952 recorded showers in a Wilson cloud chamber at high altitude and found

that shower-producing particles (i.e. electrons, positrons and photons) were less than 1%

of the total number of protons. Furthermore, during these years it was established that

cosmic rays were principally composed of protons (about 90% of all primary cosmic rays),

1Positive and negative particles that hit the atmosphere are divided by the action of the magnetic �eld
of the Earth. This means that if the number of positively and negatively charged particles is not the
same, the particle �uxes from the east and from the west will not be identical and the so-called east-west

asymmetry is observed.
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Z Element F Z Element F
1 H 540 13-14 Al-Si 0.19
2 He 26 15-16 P-S 0.03
3-5 Li-B 0.40 17-18 Cl-Ar 0.01
6-8 C-O 2.20 19-20 K-Ca 0.02
9-10 F-Ne 0.30 21-25 Sc-Mn 0.05

Table 1.1: Fractions of primary and secondary incident nuclei at 10.6 GeV/nucleon nor-
malized to oxygen [8].

alpha particles (nearly 10% of the �ux), nuclei of di�erent elements (including iron) and

positron-electrons (of the order of 1% of the total �ux) [7].

Nowadays we know that about 79% of the primary nucleons are free protons, around 14%

are alpha particles, and the rest are trace levels of di�erent nuclei, as listed in Table 1.1.

The fractions are nearly constant over the energy range from few GeV to 100 TeV [8].

1.1.3 Origin and primary spectra

Only around 40 years after Hess made his �ights it was established that cosmic rays come

from outer space to Earth, and they represent an ionizing "radiation" made up of protons

and high-energy nuclei. Nonetheless, no cosmic ray sources are visible directly and, fur-

thermore, cosmic rays near the Earth are isotropic! Even though almost a century has

passed since Hess' discovery, the origin of cosmic rays still remain a mystery [9].

Nevertheless, the study of cosmic rays has always been of great importance to Physics. Un-

til the early 1950s (in 1949, Fermi formulated a theory of the acceleration mechanism [10])

when the �rst high-energy accelerators were built, cosmic rays were the only source of

particles with energy larger than a GeV, leading to the discovery of the positron (1932),

muons (1937), pions (1947), kaons and hyperons (1953) [7]. Nonetheless, even today the

study of cosmic rays is fundamental in both astrophysics and particle physics.

The cosmic radiation incident on the top of the atmosphere is composed of all the sta-

ble charged particles and nuclei with lifetimes of order 106 years or longer. Usually, we

distinguish between:

• Primary cosmic rays: which represent all particles which are accelerated at astro-

physical sources (such as protons, electrons, helium, carbon, oxygen, iron and other

elements synthesized in stars);
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• Secondary cosmic rays: which represent those particles produced when primaries in-

teract with stellar gas (such as lithium, beryllium and boron, which are not abundant

products of stellar nucleosynthesis; or larger fraction of antiprotons and positrons).

Figure 1.1(a) shows the �ux of primary nuclei over the energy scale of 0.1 GeV to a thousand

of TeV.

Actually, the cosmic radiation is "modulated" by the solar wind (the expanding magnetized

plasma generated by the Sun) which decelerates and partially excludes the lower energy

cosmic rays from the inner solar system. This causes the anti-correlation between the solar

activity and the intensity of cosmic rays with energies below 10 GeV.

The intensity of incident primaries at the top of the atmosphere is given approximately by

this formula [8]:

IN(E) = 1.8×
(

E

1 GeV

)−α
nucleons

m2 s sr GeV
(1.1)

where E is the energy per nucleon (in a range from several GeV to beyond 100 TeV)

and α ≡ (γ + 1) = 2.7 is the di�erential spectral index of the cosmic ray �ux (γ is the

integral spectral index). Figure 1.1(b) shows the �uxes of cosmic rays at di�erent altitudes

in the atmosphere.

Even though the fractions of primary nuclei are nearly constant in this energy range, the

ratio of secondary to primary nuclei is observed to decrease with increasing energy: the

lifetime of the cosmic rays in the galaxy decreases with energy [8].

1.2 Muons on Earth

The production of secondary muons by cosmic ray interactions is a central point in the

muon tomography technique and thus in the CREAM TEA experiment. When cosmic

ray protons pass through the atmosphere of the Earth they generate particle "showers"

in which hadronic secondary particles (such as pions and kaons) are created. These are

produced as nucleons interact with nitrogen and oxygen, and then they decay to muons as

follows:

π+/K+ → µ+ + νµ

π−/K− → µ− + νµ

Charged pions with high energies (above 100 GeV) can interact with nitrogen and oxygen

producing additional cascades of secondary particles before decaying; whereas low energy
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(a) (b)

Figure 1.1: (a) Major components of the primary cosmic radiation. (b) Lines represent
the vertical �uxes of cosmic rays in the atmosphere with Energy > 1 GeV, evaluated with
Equation 1.1; the points show measurement of muons in the same energy range [8].

pions will more likely undergo weak decay before interacting with the atmosphere (e.g. a

1 GeV charged pion with a lifetime of 26 ns can travel only 55 meters) [11].

Most pions/kaons tend to decay in the upper atmosphere (∼ 15 km) but muons with energy

above 5 GeV can reach far below ground before decaying. This means that muons are the

most readily measurable products of cosmic rays near the surface of the earth. The �ux of

muons striking the Earth at sea-level is 1 muon per cm2 every minute [2].

The e�ects of the production spectrum, energy loss in the atmosphere and decay can be

seen in the angular and energy distribution: the average energy of muons at the ground is

≈ 4 GeV.

Considering the energy spectrum, it is almost �at in the region before 1 GeV, between

10-100 GeV it steepens to re�ect the primary spectrum and it steepens further at higher

energies (since pions tend to interact in the atmosphere before they decay). For Eπ � 1

TeV, the muon spectrum is one power steeper than the primary spectrum [8].

As regards the angular distribution, it is proportional to cos2 θ, which is typical of muons

of Eµ ∼ 3 GeV. At large angles, low energy muons decay before reaching the ground and
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(a) (b)

Figure 1.2: (a) Spectrum of muons at θ = 0◦ for every point except 3 which represents
θ = 75◦ [8]. (b) Average energy loss rate in liquid (bubble chamber) H, gaseous He, C, Al,
Fe, Sn, and Pb [8].

high energy pions decay before interacting, hence the mean average energy increases.

When muon decay is negligible (Eµ > 100/ cos θ GeV) and the curvature of the Earth can

be neglected (θ < 70◦), it holds this empirical formula [8]:

dNµ

dEµdΩ
≈

0.14E−2.7
µ

cm2 s sr GeV

 1

1 +
1.1Eµ cos θ

115 GeV

+
0.054

1 +
1.1Eµ cos θ

850 GeV

 (1.2)

where the two di�erent terms give the contribution of pions and kaons. The spectrum

of muon momentum in di�erent angles is shown in Figure 1.2(a).

1.3 Muons through matter

At su�ciently high energies, radiative processes become more important than ionization

for all charged particles (for muons this "critical energy" occurs at several hundred GeV)

and they dominate the energy loss. This can be written as a function of the amount of

matter traversed:

−dE
dx

= a(E) + b(E)E (1.3)

where a(E) is the ionization energy loss and b(E) is the sum of bremsstrahlung, e+e− pair

production and photo-nuclear contributions.

These functions vary slowly and we can consider them constant, so the mean range of
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muons with initial energy E0 is given by:

x0 ≈
1

b
ln

(
1 +

E0

Eµc

)
(1.4)

where the muon "critical energy" Eµc can be de�ned as the energy at which radiative

and ionization losses are equal (i.e. Eµc = a(Eµc)/b(Eµc)): below Eµc ionization losses

dominate, above it radiative e�ects dominate.

We can now have a brief look at the energy loss probability distribution, because it will

be useful when trying to �nd a way to estimate the muon momentum (in my project I will

use the energy deposited in the scintillator planes to estimate the muon momentum). The

energy loss probability distribution follows a Landau-Vavilov distribution and the most

probable energy loss is described by this relation [8]:

∆p = ξ

[
ln

2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]
(1.5)

where ξ = (K/2)〈Z/A〉(x/β2) MeV, x is the thickness in g cm−2, j = 0.2 and the density

e�ect correction δ(βγ) is given by:

δ/2→ ln(~ωp) + ln βγ − 1/2 (1.6)

in which ~ωp is the plasma energy.

1.4 Multiple Coulomb Scattering

A muon passing through a material can sometimes be absorbed and other times be scat-

tered. In this second case the particle traverses the material in a random path due to

Multiple Coulomb Scattering and it emerges in a direction which forms with the initial

direction the scattering angle θ, as shown in Figure 1.3(a).

The distribution of the deviation angle projected on a plane, is approximately a Gaussian

distribution with zero mean value and root mean square σ as follows [12; 2]:

σ =
13.6 MeV

βpc

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
≈ 13.6 MeV/c

p

√
x

X0

(1.7)
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where x is the thickness of the material, p is the muon momentum and X0 is the radiation

length which follows the formula [12]:

X0 =
716.4(g/cm2)

ρ

A

Z(Z + 1) ln(287/
√
Z)

(1.8)

where ρ, A and Z are the density, atomic number and mass number of the material re-

spectively.

The radiation length in a mixture or compound may be approximated by:

1/X0 =
∑

wj/Xj (1.9)

where wj and Xj are the fractions by weight and the radiation length for the jth element.

Equation 1.8 shows that the radiation length decreases with increasing Z; hence, for Equa-

tion 1.7 the standard deviation of the angular scattering distribution increases with Z.

This Z sensitivity allows the muon tomography technique to distinguish high-Z (lead,

tungsten, uranium) materials from medium-Z (iron, copper) and low-Z (water, concrete,

plastic) materials simply by looking at the scattering angle distribution, as can be seen in

Figure 1.3(b).

(a) (b)

Figure 1.3: (a) 2D projection of scattering and displacement used to describe multiple
Coulomb scattering. (The magnitude of scattering is exaggerated) [13] (b) Radiation
Length and Mean square scattering per unit depth of muons with energy 3 GeV. It is
clear the Z-dependence of both these parameters [2].
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Chapter 2

Muon tomography and CREAM TEA

experiment

As presented in the Introduction of this Research Essay, the muon tomography technique

can be used for the detection of hidden Special Nuclear Material in a short time, by using

Multiple Coulomb Scattering of cosmic ray muons as a radiographic probe.

This Chapter presents the history of muon tomography research and its initial achieve-

ments; then I will explain the CREAM TEA experiment in depth, both in its detector

design and the simulation program. Finally, I will describe the most important results

achieved all around the World with this tomographic technique.

2.1 Muon tomography history and achievements

The idea of exploiting the natural background provided by cosmic ray muons for recon-

structing a radiographic image was �rst introduced by E.P. George in 1955 [3]. He used the

property that di�erent materials absorb muons in di�erent quantities in order to measure

the depth of rock in an underground tunnel. Actually, he measured the attenuated cosmic

ray �ux inside the tunnel and the incident �ux outside it, thus he inferred the rock depth

from the ratio of these signals.

Following George's work, in 1970 the Nobel Prize Luis Alvarez [4] used the attenuation of

the cosmic ray �ux to look for hidden chambers inside the Chefren Pyramid in El Giza:

unfortunately, he did not �nd any, but he managed to successfully use this technique.

More recent results see Nagamine in 1992 trying to predict volcanic eruption of Mt.Fugen

and in 1995 mapping the inner structure of Mt. Tsukuba [5], both in Japan.
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All these experiments used cosmic ray muon absorption to get a radiographic image of a

region that would otherwise be inaccessible. Despite its initial success muon tomography

was not studied in detail until a new way of approaching it was introduced.

This new form of cosmic ray muon tomography was based on Multiple Coulomb Scattering

of particles as they pass through a material, as explained in Section 1.4. High energy

muons travelling through material are not only absorbed, but can also be scattered. The

deviation angle projected onto a plane has a Gaussian distribution around zero with a

width that is related to the radiation length of the material. Looking at both scattering

and absorption information it is possible to reconstruct a 3D image of objects. Moreover,

the use of passive cosmic ray muons allows us to produce radiographic images of dense

objects with no arti�cial dose of radiation.

2.2 Muon tomography principles

The general concept of muon tomography is illustrated in Figure 2.2. The experimental

device is composed of a set of two or more planes placed above the volume to be analysed;

these planes provide the position and angle of the incoming muon tracks in two orthogonal

coordinates (this is necessary in order to have a 3D image of the volume).

Muon passing through the volume are scattered or absorbed by the material inside the

volume, and then another set of detector planes provide the positions and angles of the

outgoing muons.

With the information from the upper and lower detectors it is possible to reconstruct the

muon path and get the scattering angle. Actually, the scattering angle distribution is

stochastic, its mean is equal to zero and the root mean square is related to the scattering

length of the penetrated material, as shown in Equation 1.7.

The principle behind this method is simple: regions of low density material will allow more

muons to pass through without being scattered than regions of high density material.

Hence, the 3D image is reconstructed by:

1. measuring the muon �ux at di�erent angles and positions over the target volume;

2. analysing di�erences in �ux between particular angles and directions using standard

techniques of tomography.

Furthermore, the probability of scattering decreases as the muon energy increases. Hence,

for minimizing tracking errors we should consider muons with an energy large enough to
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have a low probability of scattering through the material of interest.

Figure 2.1: Muon tomography principle. Incoming and outgoing muon tracks (solid lines
with arrows) are reconstructed by the set of muon detectors above and below the target
volume. Muons passing through a high-Z object (black tracks) scatter more than muons
going through air (grey tracks). Using the cosmic ray muon �ux it is possible to reconstruct
the geometry of the object and its density. (The magnitude of scattering is exaggerated) [13]

2.3 CREAM TEA experiment

The CREAM TEA experiment is part of the UCL High Energy Physics Department

and the acronym means: Cosmic Rays Extensive Area Mapping for Terrorism Evasion

Applications.

The aim of this experiment is to study and improve the muon tomography technique and

�nd a way to detect hidden nuclear material, without using harmful radiation.

This research is done both using an experimental apparatus and a simulation program.

2.3.1 Detector design

The prototype used in the CREAM TEA experiment is similar to the general detector

described in Section 2.2.

Scintillator planes made of polystyrene are used, hence there are no issues with safety, like
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Figure 2.2: MINERVA style scintillator planes [15]

liquid or gas detectors.

There are two sets of scintillator planes that can be used with the prototype:

• 6 planes (3 with wires in x direction and 3 in y direction) of MINOS [14] style per

side: 1 cm thick plastic scintillator segmented into 4.1 cm wide rectangles;

• 4 planes (2 with wires in x direction and 2 in y direction) of MINERVA [15] style

per side: planes divided in 33 mm × 17 mm triangular strips to form a "toblerone"

shape, as shown in Figure 2.2.

The latter has much improved position resolution as each muons hits multiple strips. Each

plane has an area of 1 m2; the distance between adjacent planes is 10 cm.

Odd planes have wires in the same direction and measure the muon trajectory in the x-z

plane; whereas even planes have wires perpendicular to those of odd planes and measure

trajectory on the y-z plane. In this way it is possible to produce a 3D image of the region

within the apparatus.

The distance between the upper and lower planes is 1 meter, hence the probed volume is 1

m3, making it suitable for the detection of small volumes of high-Z materials (steel, iron,

copper, lead or uranium).

The electronic pulses produced by scintillator strips are readout by Photo Multipliers Tubes

(PMTs) and acquired by digitalisation electronics. See Reference [11] for a deep description

of the data acquisition system.
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2.3.2 Simulation program

The simulation program uses Geant41 to simulate the detector con�guration, along with

interactions of muons with scintillator planes and the target inside the detector volume.

The detector simulated is bigger than the experimental apparatus described in Subsec-

tion 2.3.1: the scintillator planes have an area of 13×13 m2, 650 strips per plane and 8

planes per side; the distance between above and below sets of planes is 13 m.

The characteristics of each plane are the same as the MINERVA scintillators, as described

in Subsection 2.3.1.

Inside the detector volume it is possible to simulate di�erent objects, for example:

• container : a 5 mm thick iron container with dimensions 2.44 m (x direction), 12.15

m (y direction) and 2.59 m (z direction);

• water tank : part of the volume of the container is �lled with water;

• steel box : a steel box of user de�ned position, dimensions and thickness;

• target : a sphere of material, with density, position and dimensions de�ned by the

user.

2.4 Data analysis, image reconstruction and quality

The current programme used by the CREAM TEA experiment is divided into 3 main

stages:

1. Simulation

2. Detector output

3. Image reconstruction

2.4.1 Simulation

The simulation stage has been described in depth in Subsection 2.3.2: Geant4 simulates

the detector, the target bomb and surrounding environment.

1Geant4 is a tool in the particle physics community for the simulation of the interaction of particles
with matter. Applications of Geant4 are in high energy, nuclear and accelerator physics, as well as studies
in medical and space science. [16]
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In this stage, Geant4 simulates the interaction of muons with the top scintillator planes,

the target/environment and the bottom scintillator planes. The outputs are in the form

of ROOT [17] �les with information of every particle (whether muons or particles created

from muon interactions, such as electrons) passing through the scintillator planes.

The spectrum of generated muons has a momentum distribution falling as p2.7 (very similar

to the momentum distribution of cosmic ray muons) in a range of 0.1 to 1000 GeV/c.

Using Monte Carlo data is important, because it gives us "true" information about each

event, that in a normal experiment we would not have. Even though we cannot use these

pieces of information in reality, they are important to understand muon behaviour and

interactions.

2.4.2 Detector output

In this stage the ROOT �les produced by Geant4 are converted to the equivalent ROOT

�les that would be produced by a detector in reality: for each event the position hit on

the scintillator plane, the energy deposited in each triangles and other important pieces of

informations are registered.

This phase is important because it can approximate di�erent scintillator types and strip

sizes, and estimate their accuracy.

2.4.3 Image reconstruction

The output tree is then converted into histograms containing information about scattering

(using the Point of Closest Approach) and absorption.

1. Point of Closest Approach: the PCA is an algorithm used to perform 2D and 3D

radiography. Every muon takes a stochastic scattered path through a volume and

its path is estimated looking at the energy deposited in the upper and lower planes:

every triangle in which the muon deposited energy is a point where the muon passed.

Since the scattering angle (estimated in two planes) is of order of milliradians, the

path can be approximated by a straight line that connects the entry and exit points.

Voxels (3D pixels) along this line are candidates for having scattered the ray passed

through them.

Now we make the assumption that the scattering was due to a single event and

�nd its position by extrapolating the incident and scattered rays to their point of

closest approach. The voxel found is �lled with the signal value found by using the
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information on the root mean square of the scattering angles and the momentum of

the particles, using the Maximum Likelihood Expectation Maximization strategy [12]

as described in Subsection 2.4.4, other voxels are �lled with the correspondent value

for air.

Each muon passing through the detector would contribute to form a 3D image of the

volume inside it.

Figure 2.4.3 shows a 2D representation of the stages of the PCA algorithm; this is

further explained in Reference [2].

2. Absorption: the absorption information is processed in a similar way. This time we

take into consideration all the paths in the upper set of scintillator planes that do

not arrive on the lower set of scintillator planes: those muons are likely to have been

absorbed by the sample inside the volume. In order to understand in which voxel

the muon has been absorbed it is possible to look at more paths together: if two

lines cross in a voxel, it means that the muons are likely to have been absorbed at

that point. That voxel is then �lled with a signal value, this time proportional to the

number of muons absorbed in that voxel.

For further information about the absorption technique see Reference [5].

The absorption and scattering trees are evaluated for long exposure time when the detec-

tor is empty, in order to produce high quality images of the background. When we have a

target inside the volume, the muon exposure time has to be as short as possible (because

the aim is to detect the presence of a material in a useful time).

Hence, it is possible to perform a background subtraction: the voxel content of the back-

ground histogram is subtracted from the value in each voxel of the target histogram, and

if the di�erence is higher than a threshold, the output voxel is �lled with that value. The

background subtraction allows for a better image quality and to see the presence of high-Z

materials more clearly even with short muon exposition time.

2.4.4 Maximum Likelihood Expectation Maximization strategy

For each muon, after reconstructing the path, the scattering angle is recorded as the i-th

element si of the vector s {si; i = 1, ...,M}. As described in Section 1.4 the probability of

each si is represented by a Gaussian:

Pi =
1

σi2π
e−s

2
i /(2σ

2
i ) (2.1)
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Figure 2.3: A 2D representation of the PCA algorithm: (a) muon's stochastic path through
the volume; (b) estimate the muon path and identify through which the muon passed; (c)
localize the PCA; (d) �ll the PCA voxel with a signal value. [2]

where the variance σ2
i is related to the inverse of the radiation length λ0 = 1/X0 of the

material by this line integral:

σ2
i =

C

p2
i

∫
path i

λ0[ri(`)]d` (2.2)

where C is the constant seen in Equation 1.7 (C = 13.62 MeV2), pi is the momentum of the

i-th muon and ri(`) is the parametric representation of the i-th path. So far the algorithm

sets pi as the average muon momentum (1 GeV); one of the aim of my project is to insert

muon momentum information in this algorithm, which should improve the image quality

and shorten the exposure time needed.

In order to evaluate this parametrization we need to use a M×N matrix, L, where M is

the number of tracks and N is the number of voxels, and re-write:

σ2
i = (L·λ)i + ε2i =

N∑
j=1

Lijλj + ε2i (i = 1, ...,M) (2.3)

where εi is the experimental error on si that has been added in quadrature and Lij is the

product of C/p2
i times the path length of the i-th track through the j-th voxel (Lij is set

to zero for voxel not traversed by muons).

The problem of �nding the most probable set of λ is solved with a Maximum Likelihood
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Expectation Maximization strategy [12], i.e. �nding the minimum of this function:

ψ(λ) =
M∑
i=1

[
s2
i

σ2
i (λ)

+ ln(σ2
i (λ))

]
=

M∑
i=1

[
s2
i

(L·λ)i + ε2i
+ ln

(
(L·λ)i + ε2i

)]
(2.4)

The gradient is then easily evaluated as:

(∇ψ)j =
M∑
i=1

Lij
(L·λ)i + ε2i − s2

i[
(L·λ)i + ε2i

]2 (2.5)

The iterations start with the scattering density λ(0) equal to the inverse of the scattering

length of air (λ
(0)
i = 1/(3.039 × 105 mm) [18]); ψ and ∇ψ are evaluated, and we look for

the α value that minimizes:

ψ(λ(0) − α∇ψ) (2.6)

At each iteration, the value of λ is updated as follows:

λn = λn−1 − α∇ψ (2.7)

where n is an integer from 1 to the number of iterations needed. After a number of

iterations, the algorithm converges to the �nal λ which is used to �ll the voxels in which the

muon pass. This enables to produce the 3D image of the detected volume and distinguish

the di�erent materials within it.

2.4.5 Image quality

When trying to improve an algorithm, it is important to check these improvements. For

this reason it is possible to evaluate the image quality of the tomographic pictures produced

and see if adding information or changing the code would improve or otherwise.

In this stage it is possible to evaluate a Figure of Merit thanks to the true variable of

the Monte Carlo simulation. The FoM is de�ned as the average signal minus the average

background over the RMS of the background distribution:

FoM =
S− B

σB
(2.8)

This time the word signal indicates the distribution of λ in the voxels in the target volume

(e.g. an uranium sphere of 10 cm radius), and the word background indicates distribution
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of λ in the volume of the container around the target.

The meaning of the Figure of Merit is understood looking at Figure 2.4(a): we want to

see if some events in the signal region can be misunderstood as background, i.e. the high

dense material is not distinguished by the environment. If the width of the background

distribution reaches the mean of the signal distribution the high Z material could not be

detected; otherwise the more the two distribution are distant, the easier it is to distinguish

the target from the background.

Figure 2.4(b) shows an example of the di�erent values of the Figure of Merit in dependence

of the exposure time: as we might expect, the quality of the image improves with time.

(a) (b)

Figure 2.4: (a) Distribution of the λ values of the signal (blue) and background (white)
zones for an uranium sphere with 30 cm radius, with 60 seconds exposure time. (b)
Example of Figure of Merit for di�erent time exposures, in the case of an uranium sphere
with 10 cm radius.

2.5 Results achieved with muon tomography

This new approach (using Multiple Coulomb Scattering) to the technique of the muon

tomography has obtained very good results by di�erent groups all around the World. Here

I present some of the most interesting ones.

2.5.1 Image reconstruction and material discrimination by LANL

One of the �rst important results in this new approach of the muon radiography technique

was achieved in 2004 by the Los Alamos National Laboratory (LANL). [2]

They introduced this new form of cosmic ray muon radiography based on the Multiple

Coulomb Scattering. The experimental apparatus used was a small prototype as described
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(a) (b)

Figure 2.5: (a) Two plots of experimentally produced muon radiography: a steel c-clamp
on the left and the acronym LANL written with lead blocks on the right. (b) On the right
there is the simulated muon radiography of the objects on the left: they are 5 × 5 × 5 cm3

cubes of tungsten (darkest), iron (less dark) and carbon (lightest). [2]

in Subsection 2.2; as regards the algorithms used for the data analyses, they introduced

the Point of Closest Approach technique and they used a rough estimate of the muon mo-

mentum (obtained measuring the scattering of particles between plates of known material

and thickness), but they did not use an iterative method to �nd the scattering density of

the materials.

Figure 2.5(a) shows the radiographic images obtained with this new technique: in both

pictures two lines appear above and below the target object, they are the steel beams that

supported the objects. In the case of the steel c-clamp they are of the same intensity; it is

clear then in the case of the lead bricks that the densities of the materials are di�erent.

Figure 2.5(b) represents a Monte Carlo simulation of three 5× 5× 5 cm3 blocks of tungsten,

iron and carbon; the reconstruction has been done using 100,000 muons, three additional

iron plates of known thickness (for the momentum estimation) and the PCA algorithm.

This �rst experiment saw that this new approach enables to distinguish high and low Z

materials, even though the technique needs to be improved to obtain higher quality images.

See Reference [2] for a description in depth of this �rst achievement.

2.5.2 Material imaging with a large-volume muon tomography

prototype by INFN

The Italian Institute of Nuclear Physics (Istituto Nazionale di Fisica Nucleare: INFN)

published in 2009 an article describing their achievements in the muon tomography tech-

nique. [12]

The prototype used was very similar to the one described in Subsection 2.2, with the dif-

ference on the type of planes (they come from the CMS experiment at CERN [19]) and
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the dimension of the inspected volume (11 m3). The algorithms of track recognition and

tomographic reconstruction are very similar to those of the CREAM TEA experiment,

since part of them (e.g. the code which generates the λ values) have been improved thanks

to the INFN work.

As a �rst test, the acronym INFN made by lead bricks was put into the prototype and its

image has been reconstructed very clearly as seen in Figure 2.6(a).

Figure 2.6(b) shows the second step: two lead blocks on the left and two iron blocks on

the right (with dimensions: 10 × 10 × 20 cm3) were placed on two shells with 65 cm of

distance between lower and upper blocks.

Figure 2.6(c) represents �ve cubes of 10 cm side and one sample made staking two bricks

of 10 × 10 × 4 cm3 (tungsten) of di�erent materials which in order are brass, copper,

lead, tungsten, iron and aluminium. The samples were arranged on a light support with a

distance of 25 cm from each other.

From these images the success of this new approach of the muon tomography technique

is clear: the probed volume has been mapped in its geometry very well, distinguishing

the positions of the objects inside it; furthermore the di�erence between high and medium

density material is evident.

Nevertheless, the discrimination between lead and denser material is di�cult, due to the

absorption of the low energy muons which biases the reconstruction of the scattering density

(λ). This means that measuring the muon momentum would improve the precision of these

results.

For a deeper description of the experiment set up at the INFN see Reference [12].

2.5.3 Muon tomography by Department of Engineering Physics,

Tsinghua University, Beijing

An important muon tomography improvement was achieved in 2009 by the Department of

Engineering Physics of Tsinghua University in Beijing. [20]

Instead of the Maximum Likelihood Scattering (MLS) approach, described in Subsec-

tion 2.4.4 and used by both LANL and INFN, they used in their simulation the Maximum

Likelihood Scattering and Displacement (MLSD) method. This improved algorithm takes

into account not only the scattering deviation angle, but also the displacement between

the incident track and the scattered track, as seen in Figure 2.7. Actually, they �rst solve

the Maximum Likelihood with Expectation Maximization method (MLS-EM and MLSD-

EM), as described in Subsection 2.4.4, and then used the initial values based on the Point
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(a)

(b) (c)

Figure 2.6: (a) On the left hand side, the picture of the layout of the lead bricks; on the
right the tomographic image obtained by INFN. (b) 3D view of the reconstructed image
of two lead blocks on the left and two iron blocks on the right. (c) Image of six cubes; in
order from the left: brass, Cu, Pb, W, Fe, Al. [12]

of Closest Approach in the EM method to use the Ordered Subsets (OS) technique and

accelerate the reconstruction (MLS-OSEM and MLSD-OSEM).

Figure 2.8 shows two simulated layout and the results of performing di�erent iterations

and using the MLS-OSEM, MLSD-OSEM and MLSD-EM. It is clear from the picture that

using the Ordered Subsets technique reduces the reconstruction time (we get a good qual-

ity image with less iterations). Furthermore, using the displacement information improve

the image quality.

This means that adding information about the displacement even in the CREAM TEA

experiment could potentially bring higher quality imaging.

For having more informations about this Chinese achievement see Reference [20].
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Figure 2.7: Representation of the scattering angle and displacement of a muon passing
through a material [20]

Figure 2.8: (a) Representation of Phantom 1, (b) MLS-OSEM, 20 iterations, Phantom
1, (c) MLSD-OSEM, 20 iterations,Phantom 1, (d) MLSD-EM, 60 iterations, Phantom 1,
(e) Representation of Phantom 2, (f) MLS-OSEM, 20 iterations, Phantom 2, (g) MLSD-
OSEM, 20 iterations, Phantom 2, (h) MLSD-EM, 60 iterations, Phantom 2
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Part II

Coding improvements
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Chapter 3

Muon momentum estimation

In this chapter I am going to explain the work done during this year to improve the

reconstruction algorithm used by the CREAM TEA experiment.

So far the code uses a constant energy estimation for every muon (1 GeV): here, we will see

the advantages of having a muon momentum estimation and how this can be performed.

3.1 Why is the muon estimation important?

In this phase I am modifying the reconstruction algorithm which is based on a paper writ-

ten by the INFN in 2009 [12]. This code takes the information from the PCA (i.e. Point of

Closest Approach, see Subsection 2.4.3 for further information), divides the probed volume

(13 m × 13 m × 13 m) in 106 voxels (i.e. 3D pixels) and evaluates λ, the inverse of the

radiation length, see Section 1.4 or Ref. [2]. The outputs of this algorithm are root�les

which contain 2D slices of the probed volume.

In order to reconstruct the value of λ in each voxel, it is necessary to know the energy of

the muon passing through it, as seen in Equation 1.7. The algorithm uses 1 GeV energy

for every muon.

However, the spectrum of the cosmic ray muon momentum is broad, as seen in Figure 1.1,

and it goes from 0.1 to 100 GeV approximately, with an average around 2-3 GeV. Hence,

it is important to know at least the order of magnitude of the muon energy.

The �rst control is done to see if we can actually have an improvement by adding the

energy information, and if so, what is its size. In Figure 3.1 we can see the two curves

of the Figure of Merit (evaluated as described in Subsection 2.4.5): the black circles rep-

resent the true energy curve and the white squares represent the constant energy curve.
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Figure 3.1: Curves of the FoM at di�erent periods of exposure, using a constant muon
energy of 1 GeV (2) and true Energy at 10 GeV threshold (•).

The improvement is clearly evident from 5 seconds muon exposure onwards (each second

corresponds roughly to 28000 muons), where the FoM for the true energy is four times

the FoM for the constant energy. The plot shows clearly the importance of having an

estimation of the muon momentum.

In the same Figure, we can see that the error bars for the true energy are bigger than the

ones for the constant energy. This is due to the presence of misleading voxels with high λ

valuewhich is explained in Section 3.3, together with the necessity of having a threshold in

the true energy, which in this case is 10 GeV.

Moreover, we can see in Figure 3.2, the di�erence between two slices: one reconstructed

using the true energy and the other one using the constant energy. Both slices describe

the same situation: a 10 cm radius uranium sphere inside a container. In the case of the

constant energy the background inside the container is higher, making it more di�cult to

distinguish the target from the background. In the true energy plot it is easier to distin-

guish the target inside the container from the walls of the container; as we said above it is

possible to see some voxels with a medium λ value.
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(a) (b)

Figure 3.2: Slices at z = 0.54 m of 10 cm uranium sphere positioned at (0.5, 1, 0.5) in steel
container (2.44 m × 12.15 m × 2.59 m) with 20 seconds muon exposure: (a) Reconstructed
image evaluated with a constant energy of 1 GeV; (b) Reconstructed image evaluated with
the true energy with 10 GeV threshold.

3.2 How well should we measure the muon energy?

Now that we have demonstrated the importance of measuring the muon energy, we need

to understand how precise our measurement must be in order to have good results.

This time instead of the true energy I used a generated random value within a Gaussian

with the true energy as mean and di�erent widths (10%, 20%, 30%, 40% and 50%), taking

care that the energy is positive and smaller than 10 GeV.

Figure 3.3(a) shows the curves of the FoM for the two most signi�cant situations: • repre-
sents the curve of the true energy with 10 GeV threshold, 2 represents the curve of constant

1 GeV energy, ◦ represents the Gaussian with true energy as mean and 30% width; ∗ rep-
resents the Gaussian with true energy as mean and 50% width.

As it is clear in the picture, the curves generated using the Gaussian with 30% and 50%

width are within the the error bars of the curve evaluated with the true energy at 10 GeV

threshold.

This means that we do not need a high precision measurement: distinguishing between

high energy (above 10 GeV) and medium energy (1-10 GeV) and low energy (0.1-1 GeV)

muons will be su�cient to achieve an important improvement in our results.

However, Figure 3.3(a) shows that in the case of the Gaussian with 50% width, the method

is not converging for 40 seconds exposure time (even after increasing the number of iter-

ations performed). This happens because we are using the Expectation Maximisation
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technique (as explained in Ref. [12]) that requires a minimisation of a cost function (see

Equation 2.4) which depends on the muon energy and is summed over all the muons which

pass through a voxel and then over all the voxels. In increasing the exposure time, we

increase the number of muons; if our way of measuring the energy is �uctuating too much,

the minimisation of this function gets impossible.

However, we do not need to be too concerned about this feature, since we get a good image

of the probed volume from 20 seconds onwards as shown in Figure 3.3(c) which is very

similar to Figure 3.2(b), apart from a few more voxels with a misleading λ value.

The value of the Figure of Merit does not change signi�cantly between the Gaussian with

di�erent sigmas as shown in Figure 3.3(b) for a 10 cm target at 10 seconds muon exposure.

3.3 Which muon energy creates more problems?

In Section 3.1 we have seen that taking the true energy without putting a threshold can

lead to a misleading estimation of the scattering density in some voxels. For this reason,

it was necessary to research the best energy threshold.

The statistics we used relies on the fact that the central 98% of cosmic ray muons coming

to Earth can be described by a Gaussian probability distribution [13] (see Section 1.4).

The other 2% of muons have a very large scattering angle and do not follow the Gaussian.

When evaluating the scattering density we need to minimise the cost function of Equa-

tion 2.4 which depends on the square of λ (which in turns depends on the scattering angle).

If using a constant estimation of energy, the in�uence of these 2% muons on the cost func-

tion is negligible, but when using the true energy sometimes a high energy muon combined

with a large scattering angle makes the cost function di�cult to minimise to the correct

value. The presence of these disturbed voxels can make the detection of high Z material

misleading, for this reason when considering the true energy we need to put a threshold

(these misleading voxels make the error bars in Figure 3.1 bigger in the true energy case

than in the constant energy case).

The research for the best threshold has been performed by setting a threshold E0 and then

using:

• true energy E, if E < E0;

• constant energy E0, if E > E0.
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(a) (b)

(c)

Figure 3.3: (a) Curves of the FoM for 10 cm target: • true Energy with 10 GeV threshold,
2 constant 1 GeV energy, ◦ Gaussian with true energy as mean and 30% width; ∗ Gaussian
with true energy as mean and 50% width; (b) Figures of Merit for 10 cm target at 10 seconds
exposure and Gaussian with sigma equal to 10%, 20%, 30%, 40% and 50%. (c) Slice at z
= 0.54 m of 10 cm uranium sphere positioned at (0.5, 1, 0.5) in steel container of 2.44 m
× 12.15 m × 2.59 m with 20 seconds muon exposure, reconstructed image evaluated with
Gaussian of true energy as mean and 50% sigma.
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Figure 3.4(a) shows the curves for the FoM in the case of constant 1 GeV energy (2),

true energy without threshold (◦), true energy with 10 GeV threshold (•) and true energy

with 2 GeV threshold (4). The plot clearly shows that using the true energy without any

threshold is not convenient. This is reinforced even by Figure 3.4(c) which shows a slice of

10 cm uranium sphere inside a truck at 20 seconds exposure time. The presence of many

voxels with a high scattering density is evident and this leads to a higher background and

a more di�cult detection of the uranium inside the truck.

Figure 3.4(b) shows that the value of the FoM at constant time of exposure (10 seconds)

changes just slightly from 1 GeV threshold to 10 GeV threshold. This means that we only

need to measure precisely (as described in Section 3.2 low energy muons.

Unfortunately, the algorithm is not converging in the case of 1 GeV threshold for time

exposure higher than 10 seconds. For this reason Figure 3.4(a) shows the curve of the

Figure of Merit for a 2 GeV threshold. This curve lies in the error bars of a 10 GeV

threshold and underlines the fact that having a rough estimation of the momentum of low

energy muons will improve our results considerably.

Moreover, Figure 3.4(d) shows a slice of the 10 cm uranium sphere in a truck, obtained

with a 2 GeV threshold at 20 seconds exposure time. The image of the target is clearer

than in Figure 3.4(c) without a threshold, and it is comparable to Figure 3.2(b) with a 10

GeV threshold.

Even though the quality of the image changes just slightly from a 2 GeV to a 10 GeV

threshold (as shown in Figure 3.4(b)) the choice of using a 10 GeV threshold for the ideal

situation of measuring the true energy is due to the muons momentum distribution:

• E < 1 GeV : 33.71 %;

• E < 5 GeV : 93.72 %;

• E < 10 GeV : 98.62 %.

3.4 How can we evaluate the muon momentum?

Unfortunately measuring the muon energy is not an easy task. For this reason I tried

di�erent ways of estimating this energy to see which one produced the best result.
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(a) (b)

(c) (d)

Figure 3.4: (a) Curves of the Figure of Merit for 10 cm target: • true Energy with a 10
GeV threshold, 2 constant 1 GeV energy, 4 true Energy with a 2 GeV threshold; ◦ true
Energy without a threshold; (b) Figures of Merit for 10 cm target at 10 seconds exposure
and Gaussian with a threshold at 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 GeV; (c) Slice at z = 0.54 m
of 10 cm uranium sphere positioned at (0.5, 1, 0.5) in steel container of 2.44 m × 12.15 m
× 2.59 m with 20 seconds muon exposure, reconstructed image evaluated with true energy
without a threshold; (d) Slice at z = 0.54 m of 10 cm uranium sphere positioned at (0.5,
1, 0.5) in steel container of 2.44 m × 12.15 m × 2.59 m with 20 seconds muon exposure,
reconstructed image evaluated with true energy with a 2 GeV threshold.
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E
γ β T1 [s] T2 [s] T3 [s] T4 [s][GeV ]

1 9.4645 0.9940 6.7088 10−11 3.3544 10−9 4.3607 10−8 5.0316 10−8

10 94.645 0.99994 6.6717 10−11 3.3358 10−9 4.3366 10−8 5.0037 10−8

100 946.45 0.9999994 6.6713 10−11 3.3356 10−9 4.3363 10−8 5.0035 10−8

∆T 1-10 GeV 3.71 10−13 1.84 10−11 2.42 10−10 2.79 10−10

Table 3.1: Times of �ight of muons with di�erent energy (1, 10, 100 GeV) through di�erent
path lengths.

3.4.1 Looking at the time of �ight

The �rst question we need to answer is: what is the time resolution for the detector to

distinguish a 1 GeV muon from a 10 GeV muon?

The answer is a little straight forward math, recalling Einstein relation E = mγc2 and

γ =
1√

1− β2
. Table 3.1 shows the summary of the times of �ight of muons with di�erent

energies (1, 10 and 100 GeV) through di�erent path:

1. T1 → ∆x = 0.02 m : approximate thickness of one scintillator plane;

2. T2 → ∆x = 1 m : approximate thickness of the set of scintillator planes above and

below the detected volume;

3. T3 → ∆x = 13 m : height of the probed volume;

4. T4 → ∆x = 15 m : approximate distance from the �rst scintillator plane above the

detected volume and the last plane below it.

∆T in Table 3.1 represents the di�erence in the time of �ight between a 1 GeV muon and

a 10 GeV muon. For distinguishing these two muons considering just the path inside a

plane, the time precision should be on the scale of 0.1 picoseconds. Measuring the time of

�ight between the �rst and the last plane of the same set of scintillator planes (above or

below the probed volume) would require a time resolution of around 10 picoseconds. The

best situation possible to achieve this is to measure the time of �ights between the �rst

scintillator plane of the above detector and the last scintillator plane of the below detector.

Distinguishing a 1 GeV muon from a 10 GeV muon in this case would require a precision

of the order of 100 picoseconds.
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3.4.2 Looking at the mean energy above and below a threshold

Measuring the times of �ight is not easily achievable, since a precision of about 0.1 nanosec-

onds is necessary. What can easily be done is to put a kind of "veto" under the lower

detector: all the muons with energy above a given threshold will pass the veto, all the

others will not. In this way we can set a mean energy for muons above and below this

threshold and improve the quality of our measurements.

The simulations have been run with these parameters:

• E0 = 5 GeV : < E >BELOW= 1.6 GeV, < E >ABOV E= 8.5 GeV;

• E0 = 4 GeV : < E >BELOW= 1.4 GeV, < E >ABOV E= 6.9 GeV;

• E0 = 3 GeV : < E >BELOW= 1.3 GeV, < E >ABOV E= 5.4 GeV;

• E0 = 2 GeV : < E >BELOW= 1 GeV, < E >ABOV E= 4 GeV;

• E0 = 1.5 GeV : < E >BELOW= 0.8 GeV, < E >ABOV E= 3.4 GeV;

• E0 = 1.25 GeV : < E >BELOW= 0.7 GeV, < E >ABOV E= 3 GeV;

• E0 = 1 GeV : < E >BELOW= 0.6 GeV, < E >ABOV E= 2.7 GeV;

The cases of E0 = 5 GeV, E0 = 4 GeV and E0 = 3 GeV produce slices very similar to the

constant energy images; hence, the curves of their FoM are close to the constant energy

curves.

In the case of E0 = 1 GeV the algorithm does not �nd the minimum of the cost function,

since the energies are too roughly estimated.

Figure 3.5(a) shows the curves of the FoM in the case of E0 = 2 GeV, E0 = 1.25 GeV and

the usual true energy and constant energy curves. The plot emphasizes that this rough

method of estimating energy can achieve a signi�cant improvement in the image quality.

The curve of E0 = 1.25 GeV appears to be the best way of measuring the energy so far.

Figure 3.5(b) shows the Slice at z = 0.54 m of a 10 cm uranium target in the case of 1.25

GeV border line and 20 seconds time exposure. If we compare this plot to the one evaluated

with the true energy (Figure 3.2(b))), we can see that they are very similar, although in

this one there are more "background" voxels.

This method of dividing the muons above and below a threshold could be easily achieved

and represents a signi�cant improvement.
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(a) (b)

Figure 3.5: (a) Curves of the FoM in the case of: • true Energy with 10 GeV threshold,
2 constant 1 GeV energy, ◦ Energy zone: E0 = 2 GeV ; ∗ Energy zone: E0 = 1.25 GeV . (b)
Slice at z = 0.54 m of 10 cm uranium sphere positioned at (0.5, 1, 0.5) in steel container of
2.44 m × 12.15 m × 2.59 m with 20 seconds muon exposure, reconstructed image evaluated
with Energy zone: E0 = 1.25 GeV.

3.4.3 Looking at the energy deposited by muons in each strip

The detector we are using in our simulations is composed of 8 scintillator planes above and

below the probed volume. Each scintillator plane is divided into strips as the kind in the

MINERvA experiment [15], i.e. with the shape of a toblerone (see Subsection 2.3.1).

Muons passing through the volume leave some energy in the strips which is used to recon-

struct the trajectory of the muons before and after traversing the probed volume. This

energy deposit divided by the path of the muon inside the strip is related to the muon

momentum (as described in Section 1.3). Measuring the mean and the RMS of the energy

deposit over the length of the path, it is possible to obtain an estimation of the muon

momentum.

First of all, I have written a simple function to evaluate the path of muons inside a strip

and that is explained in Appendix A.

Then I have checked that the results found with this function were reasonable and this is

shown in Figure 3.6(a) in which the x axis represents the path length of the muon inside the

strip in mm, the y axis represents the energy deposited by muons in the strip in MeV, and

the z axis the number of events with these characteristics. The proportionality between

the path length and the energy deposit is reasonable, thus we can consider our method to

estimate the muon momentum reasonable.

The next step was to create a plot with the mean and RMS of the energy deposit over
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the path length (
dE

dx
) with the average true energy on the z axis and this is shown in

Figure 3.6(b). As it is possible to see the plot is uniform, and using this plot to have an

estimation of the muon energy does not produce an important improvement, since we end

up with an average constant energy between 2 GeV and 3 GeV for all muons. This is well

highlighted by Figure 3.6(c) in which we see that our curve of the FoM with the energy

evaluated in this method is close to the curve of the FoM evaluated with a constant energy.

This happens because the three regions we want to distinguish in the energy spectrum (0-1

GeV, 1-10 GeV, 10-100 GeV) have a mean and a RMS of the
dE

dx
almost in the same region

with mean and RMS 0.1-0.2 MeV/mm. This is reasonable considering that the average

energy deposit in each strip is around 2 MeV and the average path length of muons in

the strip is around 20 mm (because most of the muons are coming with a small zenith

angle and the plane width is 17 mm). This concept is underlined by Figures 3.6(d), 3.6(e)

and 3.6(f), which shows that most of the muons have the same mean and RMS dE/dx

regardless of energy.

Moreover, Figures 3.7(a) and 3.7(b) recall the shape of the curve of the mean energy loss

of charged particles in Figure 1.2(b), but they show little correlation between the energy

deposit and the muon energy. Hence, the energy deposit alone is not enough to reach a

rough estimation of the muon energy.

3.4.4 Looking at the muon scattering inside the planes

Low energy muons passing through the scintillator planes interact with the detector and

scatter inside the detector more than high energy muons.

During the evaluation of the Point of Closest Approach, we �t the positions of the strips

hit by the muon with a straight line. In this �t we evaluate a "quality factor" which is the

sum of the squared distance between the n-th point and the �tted line. This quality factor

could be used to estimate muon energy, as underlined by Figures 3.8(a) and 3.8(b) which

show a strong dependence in the energy at least between 0 and 5 GeV.

High energy muons tend to pass straight through in the detector and this factor should

be very small (typically less than 0.1 for muons with energy above 2 GeV), vice versa low

energy muons scatter more inside the detector and this factor is higher (around 0.5 for 1

GeV muons).

Figure 3.9(a) shows the plot used to evaluate the muon energy: the plot is more precise for

medium low energy muons (less than 4 GeV) than for high energy muons. For this reason,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: (a) Plot of dE/dx in MeV as a function of the path of the muon inside the
strip; (b) Plot of mean vs RMS dE/dx with mean true energy on z axis in MeV. (c) Curves
of the Figure of Merit for 10 cm uranium target with 20 seconds exposure: • true energy
with 10 GeV threshold, 2 constant 1 GeV energy, ∗ evaluated energy. (d), (e) and (f)
Plots of mean vs RMS dE/dx with number of events on z axis in MeV with energy range
0 < E < 1 GeV (d), 1 < E < 10 GeV (e) and 10 < E < 100 GeV (f).
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(a) (b)

Figure 3.7: (a) Plot of the mean energy deposit as a function of the muon energy. (b) Plot
of the RMS energy deposit as a function of the muon energy.

I tried to combined this technique with the veto explained in Subsection 3.4.2, in the case

of E0 = 3, 4 and 5 GeV. Therefore, if the muon has an energy higher than the threshold

E0, it does not pass the veto and its energy is set to a constant value, otherwise its energy

is evaluated with the �t quality parameters.

In Figure 3.8(b) we can see the curves of FoM evaluated with this method of energy

estimation. When the threshold is 10 GeV, we measure the energy of 98.62 % (as seen in

Section 3.3) of muons and we get a slightly improved quality image from the situation of

the constant energy. The best improvement is given by the threshold at 5 GeV, combined

with this method of evaluation of the energy.

3.4.5 Trying to build a likelihood

The next step is trying to use the information of the energy deposited in each strip and

of the �t quality factor together in order to get a more precise evaluation of the energy.

Actually, the information about the �t quality factor could help us better distinguish the

information about the energy deposit and see more clearly if the latter could be useful or

not.

The method used was simple in terms of derivation, but more expensive computationally

(all the other methods inside the PCA algorithm take around 15 minutes to run in the

cluster of UCL HEP computers, while this method took between 19 and 25 hours). Firstly,

I built six 3D-histograms, weighted by the number of events, as:

For each event there are values of the 4 variables: A (Quality �t up), B (Quality �t down),
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(a) (b)

Figure 3.8: (a) Plot of the �t quality factor for the above set of scintillator planes as a
function of the muon energy. (b) Plot of the �t quality factor for the below set of scintillator
planes as a function of the muon energy.

(a) (b)

Figure 3.9: (a) Plot of quality factor for above set of detectors on x axis, quality factor for
below set of detectors on y axis, muon energy on z axis; (b) Curves of the Figure of Merit.
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name x axis y axis z axis
h1 Quality Fit Up mean dE/dx muon Energy
h2 Quality Fit Down mean dE/dx muon Energy
h3 Quality Fit Up RMS dE/dx muon Energy
h4 Quality Fit Down RMS dE/dx muon Energy
h5 Quality Fit Up Quality Fit Down muon Energy
h6 RMS dE/dx mean dE/dx muon Energy

C (mean dE/dx) and D (RMS dE/dx), and the procedure for each event is as follows:

1. Measure the values of A, B, C and D;

2. Take the projection on z axis of the histogram h1 in the point (A, B), to �nd the 1D

histogram which is the distribution of energy corresponding to (A, B);

3. Normalise the projection with the number of events in that 1D histogram, to �nd

the probability distribution h1-1D;

4. Repeat step 2 with (A, C) in h3, to �nd h3-1D;

5. Multiply h1-1D and h3-1D to �nd the joint probability distribution;

6. Fit the distribution with a Landau-Valivov function and get the maximum as the

most probable energy value (alternatively, take the maximum of the distribution)

This procedure has been used in three cases:

1. (Fit Quality up, Fit Quality down) and (RMS dE/dx, Fit Quality up);

2. (Fit Quality up, Fit Quality down) and (mean dE/dx, Fit Quality up);

3. (Fit Quality up, Fit Quality down) and (mean dE/dx, RMS dE/dx);

4. (Fit Quality up, Fit Quality down), (mean dE/dx, Fit Quality up) and (RMS dE/dx,

Fit Quality up);

Figure 3.10 shows the plots of the evaluated energy as a function of the true energy.

Sub�gure 3.10(a) clearly illustrates the proportionality between the evaluated energy and

the true energy when using the �t quality method. Sub�gures 3.10(b), 3.10(c) and 3.10(d)

show that this method of taking the joint probability makes this plot worse. This means

that instead of helping, the information of the energy deposit smoothes the probability
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distribution to an average value. This concept is further underlined by Sub�gure 3.10(e):

using the two pieces of information on the energy deposit almost delete the information

gained from the �t quality factor.

In this context, we can say that the energy deposited by the muons in each strip cannot

give signi�cant information about the muon energy.

3.5 What is the most convenient way of evaluating the

muon energy?

In this chapter we have seen that measuring the muon energy can bring a signi�cant

improvement in the reconstruction algorithm. Moreover, it is necessary just to know the

order of magnitude of the energy to improve the image quality (distinguishing between

0.1-1 GeV, 1-10 GeV and 10-100 GeV muons).

Unfortunately, measuring the time of �ight is not feasible with the timing precision available

in the CREAM TEA technology. Trying to use the information about the energy deposited

by each muon in the strips is not su�cient to provide a acceptable estimation of the energy,

since we end up with just an average.

A feasible and signi�cant improvement can be achieved using an energy threshold at 1.25

GeV. Moreover, the �t quality factor managed to give a good estimation of medium low

energy muons (less than 5 GeV).

A comparison of the two most signi�cant methods tried can be found in Figure 3.11.

The two curves of the evaluated energy are closely distributed such that their error bars

overlap and both represent a little improvement from the constant energy curve. However,

the curve evaluated just using the threshold at 1.25 GeV seems to be the best way to

improve the quality of our images.

46



(a) (b)

(c) (d)

(e)

Figure 3.10: Plots of true Energy on the x axis, evaluated energy on the y axis and number
of events on the z axis. Energy reconstructed using these plots: (a) (Fit Quality up, Fit
Quality down); (b) (Fit Quality up, Fit Quality down) and (RMS dE/dx, Fit Quality up);
(c) (Fit Quality up, Fit Quality down) and (mean dE/dx, Fit Quality up); (d) (Fit Quality
up, Fit Quality down) and (mean dE/dx, RMS dE/dx); (e) (Fit Quality up, Fit Quality
down), (mean dE/dx, Fit Quality up) and (RMS dE/dx, Fit Quality up).
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Figure 3.11: Curves of the FoM at di�erent period of exposure, using a constant muon
energy of 1 GeV (2), true Energy at 10 GeV threshold (•), energy threshold at 1.25 GeV
(∗) and �t quality factor with 5 GeV threshold (4).
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Chapter 4

Scattering and displacement

The reconstruction algorithm described in Subsection 2.4.4 is based on a paper written by

the INFN in 2009 [12]. This code uses the Expectation Maximisation technique [21] with

the muon scattering angle as input.

Other important works, such as the Chinese paper described in Subsection 2.5.3 and

Ref. [20], suggest the possibility to use the displacement of the ray together with the

scattering angle. This Chapter describes the Expectation Maximisation technique for scat-

tering and displacement (Maximum Likelihood Scattering and Displacement, MLSD), as

described in a previous work by LANL [13] and the improvements we can get using this

technique.

4.1 Displacement evaluation

In Subsection 2.4.4 the reconstruction algorithm is described on the assumption that the

98% of central muons coming to Earth in the Multiple Coulomb Scattering follow a Gaus-

sian distribution with zero as mean and RMS described by:

σθ =
13.6 MeV/c

p

√
x

X0

(4.1)

where x is the muon path through the material, X0 is its radiation length and p is the

muon momentum measured in MeV/c.

The CREAM TEA experiment uses an algorithm that tries to reconstruct the value of

the inverse of the radiation length of the material, λ, and use it to create an image of the
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probed volume:

λ(X0) =
1

X0

(4.2)

It is clear that the root mean square of the scattering angle is related to this λ of the

material as follows:

σ2
θ =

(
13.6

p

)2

λx = p2
rλx (4.3)

where pr =
13.6

p
is a factor which takes into account the muon momentum.

The displacement ∆x and the scattering angle ∆θ are correlated. Their distribution can

be described as a jointly Gaussian [8] with zero mean and:

σ∆x =
x√
3
σ∆θ (4.4)

ρ∆θ∆x =

√
3

2
(4.5)

Moreover, the covariance matrix can be expressed as follows:

Σ ≡

[
σ2

∆θ σ∆θ∆x

σ∆θ∆x σ2
∆x

]
=

(
13.6

p

)2

λ

[
x x2/2

x2/2 x3/3

]
(4.6)

For simplicity, we can de�ne the matrix A as:

A =

[
x x2/2

x2/2 x3/3

]
(4.7)

and write Equation 4.6 as:

Σ =

(
13.6

p

)2

λA (4.8)

In three dimensions, we may consider scattering in two orthogonal planes, referring to

scattering angles ∆θx and ∆θy and displacements ∆x and ∆y. De�ections into x and y

plane are independent and identically distributed, as seen in Ref. [8].

For this reason, we can proceed considering a system oriented orthogonally to the direction

of the incident muon and see the projections of the displacements and angles. Figure 4.1

shows a muon incident at a projected angle θx0 and scattered at a projected angle θx1 with

displacement ∆x (a similar situation would occur on the yz plane).
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Figure 4.1: Projection of the muon path inside the probed volume and de�nition of scat-
tering displacement.

The scattering angle is de�ned as:

∆θx = θx1 − θx0 (4.9)

and the displacement as:

∆x = ∆xm
cos(∆θx + θx0)

cos ∆θx
cos θx0Lxy (4.10)

where the angles are the same as in Figure 4.1, ∆xm = x1 − xp and the de�nition of Lxy

is given in Section B.1, together with the derivation of this formula.

The procedure for the Maximum Likelihood Expectation Maximisation reconstruction in

this case follows the same steps as described in Section 2.4.4, but starting from a probability

which takes into account both scattering and displacement. Details of this procedure can

be found in Ref. [13] and [22] or in Section B.3.
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4.2 Maximum Likelihood Scattering and Displacement

The �rst step was reproducing the exact algorithm described in Ref. [13] which relies on

the Maximum Likelihood for Scattering and Displacement (MLSD) technique, explained

in Section B.3.

The procedure used is summarised in 6 steps:

1. Gather measurements of scattering angles, displacements and momentum for each

muon i = 1 to M : (∆θx, ∆θy, ∆x, ∆y, p)i;

2. Estimate the geometry of interaction of each muon with each voxel j = 1 to N :

(L, T )ij, where Lij is the muon path length inside each voxel and Tij is the 3D path

length from the exit point of the voxel to the exit point of the probed volume, as

seen in Section B.2;

3. For each muon voxel pair, compute the weight matrix: Wij de�ned in Equation B.12,

which takes into account the geometry of interaction;

4. Initialise the λ in each voxel with a guess: λAIR;

5. Do until (stopping criteria):

(a) for each muon, compute Σ−1
Di
, which is the inverse of the covariance matrix

de�ned in Equation B.11;

(b) for each muon voxel pair, compute Snij, which is a conditional expectation term

found using Equation B.22;

(c) �nd λj,new for each voxel with an iterative method explained in Equation B.24;

6. End do.

The algorithm has been run for 100 iterations and it is approximately 4 times slower than

the INFN one, but the quality of the results is encouraging. Figure 4.2(a) shows the slice

at z = 0.54 m of a 10 cm uranium target inside a container: the target can be easily

distinguished from the background.

However, looking at the curves of the FoM in Figure 4.2(b), we can notice that the error

bars are larger than the ones found without using the information on the displacement.

This is probably due to the size of the voxels and of the target: the target is a 10 cm radius

sphere, and the voxels are cubes of dimensions: 13 cm × 13 cm × 13 cm. The region of
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the target is small compared to the voxel size, and this creates problems in evaluating the

quality of this new algorithm. Thus, we decided to move to a 30 cm target in order to

proceed with the analysis.

Figure 4.2(c) shows the slice at z = 0.54 m of a 30 cm uranium target inside a container: the

presence of the target is even clearer than before. Comparing this plot to Figure 4.2(d), re-

constructed with the Maximum Likelihood Scattering algorithm (MLS), it is evident that

the Maximum Likelihood Scattering and Displacement (MLSD) represents an improve-

ment. However, Figure 4.2(e) which is evaluated using the true energy information is still

the best image of the probed volume we have.

4.3 MLSD and energy evaluation

Chapter 3 explains in depth the research for the most e�ective muon momentum estimation.

After trying di�erent techniques, we found that using a simple "veto" underneath the

detector will produce a signi�cant improvement in the quality of our results. Now, we can

try to add this information to the scattering and displacement algorithm.

The research for the best threshold has been performed in the same way as described in

Subsection 3.4.2, looking at:

• E0 = 5 GeV : < E >BELOW= 1.6 GeV, < E >ABOV E= 8.5 GeV;

• E0 = 4 GeV : < E >BELOW= 1.4 GeV, < E >ABOV E= 6.9 GeV;

• E0 = 3 GeV : < E >BELOW= 1.3 GeV, < E >ABOV E= 5.4 GeV;

• E0 = 2 GeV : < E >BELOW= 1 GeV, < E >ABOV E= 4 GeV;

• E0 = 1.5 GeV : < E >BELOW= 0.8 GeV, < E >ABOV E= 3.4 GeV;

• E0 = 1.25 GeV : < E >BELOW= 0.7 GeV, < E >ABOV E= 3 GeV;

Figure 4.3(c) shows the curves of the FoM in the cases speci�ed above. Even though the

curves are close to each other, the best threshold in the case of the MLSD algorithm is at

2 GeV.

As an example, Figure 4.3(a) represents the slice at z = 0.54 m of a 30 cm uranium sphere

inside a steel container, reconstructed using the MLSD algorithm and the energy threshold

at E0 = 1.25 GeV (see Subsection 3.4.2 for further details). Comparing Figure 4.3(a) to

Figure 4.3(b) (obtained with MLS and energy threshold E0 = 1.25 GeV), it is easy to see
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: (a) Slice at z = 0.54 m of 10 cm uranium sphere in steel container with 15
seconds muon exposure, image reconstructed with MLSD; (b) Curves of the FoM: • true
Energy with 10 GeV threshold, 2 constant 1 GeV energy, ∗ MLSD; (c), (d) and (e) Slices
at z = 0.54 m of 30 cm uranium sphere in steel container with 15 seconds muon exposure,
image reconstructed constant 1 GeV energy with MLSD (c), constant 1 GeV energy with
MLS (d) and true energy with MLS (e); (f) Curves of the FoM: • true Energy with 10 GeV
threshold with MLS, 2 constant 1 GeV energy with MLS, ∗ constant 1 GeV energy with
MLSD.
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the improvement.

Finally, Figure 4.4 highlights this improvement even further: 2 represents where we were

at the beginning (MLS with constant 1 GeV energy), • represents where we wanted to

arrive and ◦, 4 and ∗ represent the steps of the techniques explained through this report.

Combining the MLSD technique with the evaluation of the energy with a simple threshold

(in this case 2 GeV) can lead to signi�cant improvement in the reconstruction algorithm,

so that we can obtain a high quality image of the probed volume with a relatively small

exposure time (between 5 and 15 seconds).

Nonetheless, we should not forget that these methods were tested just for 10 cm and 30 cm

target; the next step should be trying to optimise the reconstruction algorithm for smaller

targets (5 cm or 7 cm) even shielded by disturbing objects (a steel box or a water tank).

But before doing that, it is necessary to �nd a new way to divide the probed volume into

voxels in order avoid having the size problem found at the beginning of this Chapter. A

possible way to do this could be to divide the probed volume in bigger size voxels and

evaluate an average λ value, select one or just few voxels with the maximum λ and divide

that volume into smaller voxels.

However, Figure 4.4 emphasises clearly the improvement achieved using the scattering and

displacement together with the energy threshold: even though the algorithm is four time

slower than the INFN one, the FoM is four times larger.
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(a) (b)

(c)

Figure 4.3: (a) and (b) Slices at z = 0.54 m of 30 cm uranium sphere positioned at (0.5,
1, 0.5) in steel container (2.44 m × 12.15 m × 2.59 m) with 15 seconds muon exposure,
image reconstructed with MLSD + energy threshold at E0 = 1.25 GeV (a) and MLS +
energy threshold at E0 = 1.25 GeV (b); (c) Curves of the FoM: • MLS true Energy with
10 GeV threshold, 2 MLS constant 1 GeV energy, ◦ MLS + E0 = 1.25 GeV, 4 MLSD
constant 1 GeV energy, ∗ MLSD + E0 = 1.25 GeV.
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Figure 4.4: Curves of the FoM: •MLS true Energy with 10 GeV threshold, 2 MLS constant
1 GeV energy, ◦ MLS + E0 = 1.25 GeV, 4 MLSD constant 1 GeV energy, ∗ MLSD +
E0 = 1.25 GeV.
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Conclusions

In this report we have seen that cosmic ray muons come almost isotropically to the Earth's

surface. They are a completely natural and harmless radiation and they can travel very

long distances before decaying, hence they are suitable for use in performing tomography

and probe images that could not be seen otherwise.

The principle of muon tomography is simple: looking at the Multiple Coulomb Scattering

of a muon through a non-homogeneous material, it is possible to have a tomographic image

of it .

Di�erent experiments all around the world have proved the importance and the e�ciency

of this technique and the CREAM TEA experiment aims to improve it for anti-terrorism

applications.

In Chapter 3, we saw the importance of evaluating the muon energy, the improvement that

can be obtained, the precision needed in the measurements and how this can be achieved

by means of di�erent methods. Unfortunately, the time of �ight (Subsection 3.4.1) cannot

be evaluated with the time precision available with CREAM TEA and the reconstruction

obtained with the energy deposited by muons in each strip (Subsection 3.4.3) give just an

average of the muon momentum. Nonetheless, it is possible to get a good estimation of

the energy using a �t quality parameter (Subsection 3.4.4) which takes into account the

scattering inside the scintillator planes.

Sometimes, the best results can be achieved with the simplest method, and this was the

case. Using a "veto" underneath the detector we can discern muons into two zones of

energy (E ≤ E0 or E ≥ E0) of which we consider the average energy. By means of this

simple but e�cient method we can produce high quality results with a lower exposure time

with respect to the previous algorithm.

The second step of this Thesis was explained in Chapter 4, where we saw the Maximum

Likelihood Scattering and Displacement reconstruction. The algorithm used so far took

information just on the scattering angle; this new algorithm takes into account the dis-
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placement of the ray together with the scattering angle. Unfortunately, the running time

is 4 times slower than the old algorithm, but the quality of the results is improved consid-

erably (we need to remember that one of the aims is to reduce the exposure time, i.e. the

number of muons necessary to have a good image of the probed volume; the running time

can be reduced with other computational techniques).

The �nal step was using these two methods together and looking at the best threshold in

the case of the MLSD algorithm. The results found are encouraging: the FoM is 4 times

larger than using the old algorithm.

The last result has been found using a 30 cm target and one of the next steps is trying

to write an e�cient algorithm with smaller targets even shielded by water tanks or steel

boxes. Although smaller targets can create problems with the voxel size (13 cm × 13 cm

× 13 cm), it will be possible to overcome this problem by dividing the probed volume in

small number of preliminary big voxels, evaluate an average λ value in each of them and

select one or a few big voxels to divide into 106 smaller voxels. On the other hand, it will

be important to speed up the running time of the reconstruction algorithm.
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Appendix A

Geometry and code for energy

estimation

In this chapter I describe the geometry study and the pieces of code I had to write in order

to arrive at an energy estimation.

A.1 Geometry of the strips

Firstly, I need to explain the geometry of the strips and how we can measure the path

length of the muon in each strip.

Above and below the probed volume there are 8 scintillator planes; each scintillator plane is

divided into strips with the shape of a toblerone; even planes are segmented in x direction,

odd planes are segmented in y direction. I will explain the geometry in the plane xz and

obviously it is the same as in the yz plane.

In Figures A.1 and A.2 we can see the two di�erent situations for muons passing through

the strips.

Let us begin focusing on Figure A.1:

• P0 = (x0, z0) is the centre of the strip;

• A1 = (x0, z0 − d/2) is the edge of the triangle;

• A2 = (x0 + b/2, z0 + d/2) is the right point of the base of the triangle;

• A3 = (x0 − b/2, z0 + d/2) is the left point of the base of the triangle;

• γ : x = za+ b is the reconstructed muon path around the strip.

60



Secondly, we need to �nd the angular coe�cients and equations for α and β:

mα =
z0 + d/2− z0 + d/2

x0 + b/2− x0

=
2d

b
mβ =

z0 + d/2− z0 + d/2

x0 − b/2− x0

= −2d

b
(A.1)

α : z− z0 + d/2 =
2d

b
(xa+ b− x0) β : z− z0 + d/2 = −2d

b
(xa+ b− x0) (A.2)

Hence, the three points we want to �nd are:

x1 = z1 a+ b

z1 =
z0 − d/2−

2d

b
(b− x0)

1 +
2d

b
a

x2 = z2 a+ b

z2 = z0 + d/2

x3 = z3 a+ b

z3 =
z0 − d/2 +

2d

b
(b− x0)

1− 2d

b
a

(A.3)

After �nding these three points a function checks which of these are in the area of the

strip, pick the two points and evaluate the distance between them.

If the strip is upside down just like in Figure A.2, the principal points are:

• P0 = (x0, z0) is the centre of the strip;

• A1 = (x0, z0 + d/2) is the edge of the triangle;

• A2 = (x0 + b/2, z0 − d/2) is the right point of the base of the triangle;

• A3 = (x0 − b/2, z0 − d/2) is the left point of the base of the triangle;

• γ : x = za+ b is the reconstructed muon path around the strip.

The formulae are very similar to the ones above:

mα =
z0 + d/2− z0 + d/2

x0 + b/2− x0

=
2d

b
mβ =

z0 + d/2− z0 + d/2

x0 − b/2− x0

= −2d

b
(A.4)

α : z− z0 − d/2 =
2d

b
(xa+ b− x0) β : z− z0 − d/2 = −2d

b
(xa+ b− x0) (A.5)

Hence, the three points are:
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Figure A.1: Geometry of MINERvA strips 1: P0 = (x0, z0) is the centre of the strip;
A1 = (x0, z0 − d/2) ; A2 = (x0 + b/2, z0 + d/2) ; A3 = (x0 − b/2, z0 + d/2) ; γ : x = za+ b
reconstructed muon path through the strip.

x1 = z1 a+ b

z1 =
z0 + d/2 +

2d

b
(b− x0)

1− 2d

b
a

x2 = z2 a+ b

z2 = z0 − d/2

x3 = z3 a+ b

z3 =
z0 + d/2− 2d

b
(b− x0)

1 +
2d

b
a

(A.6)

It is evident that just a positive/negative sign before d/2 changes from the formulae

above to the ones below (notice that z1 for one kind of strip corresponds to z3 for the other

kind and vice versa).

A.2 Evaluating delta function

The geometry described above can be easily implemented in this function:

Double_t Evaluate_delta (double x_0, double z_0, double m, double q, ...

... double m2, double sign){
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Figure A.2: Geometry of MINERvA strips 2: P0 = (x0, z0) is the centre of the strip;
A1 = (x0, z0 + d/2) ; A2 = (x0 + b/2, z0 − d/2) ; A3 = (x0 − b/2, z0 − d/2) ; γ : x = za+ b
reconstructed muon path through the strip.

Double_t z[3], x[3];

Double_t delta;

double d = scintTriHeight*1000.; // in mm

double b = scintTriBase*1000.; // in mm

z[0] = (z_0 - (sign*d/2.) + (2*d*(q - x_0)/b) ) / ...

... (1. - (2*d*m/b));

x[0] = m*z[0] + q;

z[1] = (z_0 - (sign*d/2.) - (2*d*(q - x_0)/b) )/ ...

... (1. + (2*d*m/b));

x[1] = m*z[1] + q;

z[2] = z_0 + (sign*d/2.);

x[2] = m*z[2] + q;

int j1 = 0;

for (int j = 0; j < 3; j++){

if (x[j] >= (x_0 - (b/2. + 0.1)) && x[j] <= (x_0 + (b/2.+ 0.1))){

if (z[j] >= (z_0 - (d/2.+ 0.1)) && z[j] <= (z_0 + (d/2.+ 0.1))){
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x[j1] = x[j];

z[j1] = z[j];

j1++;

}

}

}

if (j1<2) return 0.;

delta = (sqrt(pow(x[0] - x[1],2.) + ...

... + pow(z[0] - z[1],2.)))*sqrt(1.+m2*m2));

return delta;

}

With regards to the mean and RMS I have used the statistical de�nition:

< x >=
1

N

N∑
i=1

xi σ =

√√√√ 1

N

N∑
i=1

(xi− < x >) (A.7)

then implemented this function:

void meanAndRMS (int nPoints, double x[], double meanRMS [2]){

meanRMS[0] = 0.; // mean

meanRMS[1] = 0.; // RMS

for (int h = 0; h < nPoints; h++){

meanRMS[0] += x];

meanRMS[1] += (x[h]*x[h]);

}

meanRMS[0]/= nPoints;

meanRMS[1] = sqrt((meanRMS[1]/nPoints) - (meanRMS[0]*meanRMS[0]));

}
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A.3 Image Quality

In Subsection 2.4.5 we saw the reason why we choose the de�nition of the Figure of Merit

as:

FoM =
S− B

σB
(A.8)

The error on the FoM can be evaluated with a simple derivative and is:

σFoM =

√(
εS
σB

)2

+

(
εB
σB

)2

+

(
FoM

εσB
σB

)2

(A.9)

where εS is the error on the Signal mean, εB is the error on the Background mean and εσB
is the error on the Background RMS.

This is the code written to evaluate it:

#include "DetectorDefs.hh"

#include <cmath>

#include <iostream>

using namespace std;

void imageQuality () {

TObjArray *HlistSignal = new TObjArray(20);

TObjArray *HlistBackground = new TObjArray(20);

TGraphErrors *FoM_graph = new TGraphErrors();

char HistName[80];

char FileName[180];

char HistoSign[80];

char HistoBack[80];

int noBinsX = 100;

int noBinsY = 100;

int noBinsZ = 100;

double side_length = SIDELENGTH;
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double dx = side_length/noBinsX;

double dy = side_length/noBinsY;

double dz = side_length/noBinsZ;

double sphere_radius = SPHERE_RADIUS_CM/100.; // everything in m

double sphere_x = SPHERE_X_M ;

double sphere_y = SPHERE_Y_M ;

double sphere_z = SPHERE_Z_M ;

// half of container dimensions in m

double container_x = (2.44/2);

double container_y = (12.15/2);

double container_z = (2.59/2);

// Number of bins inside the container

int in_x = (noBinsX/2) - int(container_x/dx) ;

int fin_x = (noBinsX/2) + int(container_x/dx) ;

int in_y = (noBinsY/2) - int(container_y/dy) ;

int fin_y = (noBinsY/2) + int(container_y/dy) ;

int in_z = (noBinsZ/2) - int(container_z/dz) ;

int fin_z = (noBinsZ/2) + int(container_z/dz) ;

//Normalise the position of the sphere to the slice coordinates

sphere_x = (sphere_x + (side_length/2.));

sphere_y = (sphere_y + (side_length/2.));

sphere_z = (sphere_z + (side_length/2.));

sphere_radius += sqrt((dx*dx)+(dy*dy)+(dz*dz))/2.;

double x_pos = dx/2.;

double y_pos = dy/2.;

double z_pos = dz/2.;

double distance = 0.;

int point = 1 ;
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char *input="/Directory/Lambda_10iterations_5cmtarget";

for (int NFile = 1; NFile < 41 ; NFile ++) {

if (NFile == 1 || NFile%5 == 0 ) {

sprintf(FileName,"%s_%d_seconds.root",input,NFile);

TFile* in = new TFile(FileName);

sprintf(HistoSign, "%s_%d", "Signal", NFile);

sprintf(HistoBack, "%s_%d", "Background", NFile);

//Histo for Current Signal and Current Background

TH1F *CS = new TH1F(HistoSign, HistoSign,100,0.,10.);

TH1F *CB = new TH1F(HistoBack, HistoBack,100,0.,10.);

HlistSignal->Add(CS);

HlistBackground->Add(CB);

for(int SliceNo = in_z; SliceNo <= fin_z; SliceNo++){

sprintf(HistName,"Slice_%d",SliceNo);

TH2D* CurrentSlice = (TH2D*) in->Get(HistName);

z_pos = dz*(SliceNo*1. + 0.5);

for(int x = in_x; x <= fin_x; x++){

x_pos = dx*(x*1. + 0.5);

for(int y = in_y; y <= fin_y; y++){

y_pos = dy*(y*1. + 0.5);

distance = sqrt(pow((x_pos - sphere_x),2.) + ..

.. + pow((y_pos - sphere_y),2.) + pow((z_pos - sphere_z),2.) ) ;

if (distance < = sphere_radius){

CS->Fill(CurrentSlice->GetBinContent(x,y));

} else CB->Fill(CurrentSlice->GetBinContent(x,y));

} // end for y

} // end for x

} // end slices z
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double FoM = (CS->GetMean() - CB->GetMean())/ CB->GetRMS();

double termSign = pow(CS->GetMeanError()/CB->GetRMS(), 2.);

double termBack = pow(CB->GetMeanError()/CB->GetRMS(), 2.);

double termSigmaBack = pow(CB->GetRMSError()*FoM/CB->GetRMS(), 2.);

double FoMerror = sqrt(termSign + termBack + termSigmaBack);

FoM_graph->SetPoint(point, NFile*1., FoM);

FoM_graph->SetPointError(point, 0., FoMerror);

point ++;

} }

TFile* out = new TFile("File.root", "RECREATE");

HlistSignal->Write();

HlistBackground->Write();

FoM_graph->SetTitle("Figure of Merit");

FoM_graph->SetName("FoM_graph");

FoM_graph->GetXaxis()->SetTitle("Seconds");

FoM_graph->GetYaxis()->SetTitle("FoM");

FoM_graph->Write();

out->Close();

}
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Appendix B

Geometry and code for scattering and

displacement technique

In this Appendix I describe the geometry and the code for the Maximum Likelihood Scat-

tering and Displacement, as described in Chapter 4.

B.1 Evaluating the displacement

In order to understand how to calculate the displacement of a scattered ray, we can refer to

Figure B.1. The straight line extension of the unscattered muon path through the volume

to the point (xp, yp) in Figure B.1 can be de�ned as:

L =
x

cos θx0 cos θy0

= x
√

(1 + tan θ2
x0)(1 + tan θ2

y0) ' x
√

1 + tan θ2
x0 + tan θ2

y0 = xLxy

(B.1)

The scattering angle on the x plane is de�ned as:

∆θx = θx1 − θx0 (B.2)

The measured displacement is found as ∆xm = x1−xp, and must be rotated into the plane

orthogonal to the ray path and adjusted for the 3-D path length.

First of all we de�ne:

a = ∆xm cos θx0 b = ∆xm sin θx0 (B.3)
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Hence, ∆x in Figure B.1 can be calculated as:

∆x = b tan ∆θx − a = ∆xm

(
sin ∆θx
cos ∆θx

sin θx0 − cos θx0

)
= ∆xm

cos(∆θx + θx0)

cos ∆θx
(B.4)

Now that our measurement is projected with the right orientation, we can adjust it for the

3-D path length by multiplying by cos θy0, hence:

∆x = ∆xm
cos(∆θx + θx0)

cos ∆θx
cos θx0Lxy (B.5)

In this way, we can rede�ne the covariance matrix A of Eq. 4.7 as:

A =

[
L L2/2

L2/2 L3/3

]
(B.6)

Since scattering measurements are made independently in the two orthogonal planes, we

can use the same procedure for the y plane.

It is important to underline that the approximations made in the derivation above are valid

only for "small" scattering angles and displacements.

B.2 Scattering through multiple layers of material

Figure B.2 shows a muon trajectory through a non-homogeneous material. The observed

information are ∆θ and ∆x. Actually the muon is undergoing Multiple Coulomb scattering

and the "hidden" scattering and displacement in each voxels are ∆θj and ∆xj.

These quantities are related as:

∆θ = ∆θ1 + ∆θ2 + ∆θ3

∆x = ∆x1 + L2 tan(∆θ1) + ∆x2 + L3 tan(∆θ1 + ∆θ2) + ∆x3

≈ ∆x1 + ∆x2 + ∆x3 + T1∆θ1 + T2∆θ2

(B.7)

Where the latter simpli�cation is valid only for small de�ections, and Tj is de�ned as the

3D ray path length from the exit point of the voxel to the exit point of the probed volume.
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Figure B.1: Projection of the muon path inside the probed volume and de�nition of scat-
tering displacement.
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More generally, we can de�ne:

∆θ =
∑
j

∆θj

∆x =
∑
j

(∆xj + Tj∆θj)
(B.8)

Now, we can write the covariance of the scattering and displacement for the i-th ray in the

j-th voxel as:

Σij = p2
r,iλjAij (B.9)

where pr,i =
13.6

pi
and:

Aij ≡

[
Lij L2

ij/2

L2
ij/2 L3

ij/3

]
(B.10)

and Lij is the i-th muon path length through the j-th voxel.

Now, we can combine all the equation above and �nd:

Σi = p2
r,i

∑
j≤N

λjWij (B.11)

where N is the number of voxels and Wij is a weight matrix de�ned as

Wij ≡

[
Lij L2

ij/2 + LijTij

L2
ij/2 + LijTij L3

ij/3 + L2
ijTij + LijT

2
ij

]
(B.12)

based on a calculation derived in Ref. [22].

Finally, we can de�ne the data vector:

Di ≡

[
∆θi

∆xi

]
(B.13)

Hence, the likelihood of λ can be written as:

P (D|λ) =
∏
i≤M

P (Di|λ) (B.14)
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Figure B.2: Muon scattering through di�erent materials (magnitude of scattering is exag-
gerated).

where i is the muon number that goes from 1 to M, and the factors are:

P (Di|λ) =
1

2π|Σi|1/2
exp

(
−1

2
DT
i Σ−1

i Di

)
(B.15)

B.3 Maximum Likelihood Expectation Maximisation

The Maximum Likelihood technique from an incomplete set of data through the Expec-

tation Maximisation is explained in Ref. [21]. This algorithm relies on two data sets:

"incomplete" (i.e. observed) and "complete" (i.e. hidden plus observed) data.

In this context, the �rst set of data is the measured scattering and displacement: D =

{Di : 1 ≤ i ≤M}. The latter is represented by the set of scattering angle and displacement

of the i-th muon by the j-th voxel: H = {Hij : 1 ≤ i ≤M&1 ≤ j ≤ N}.
The algorithm uses an auxiliary function:

Q = EH|D,λn [log(P (D,H|λ))] = EH|D,λn [log(P (H|λ))] (B.16)

where the second passage is because the hidden data determine the observed data uniquely.

This auxiliary function is the expected value of the log likelihood of the observed and hidden

data, given the parameter vector λ and λn with respect to the conditional distribution of

73



H [13].

Two steps were performed for each iteration:

1. Estimate the conditional distribution of hidden data P (D,H|λ);

2. Maximise the auxiliary function Q, which is an expected value with respect to the

distribution found in step 1.

From the parameter λn, the algorithm produces a new estimation λn+1:

λn+1 = arg max
λ

Q(λ;λn) (B.17)

Now we can start writing the probability distribution, similar to Equation B.15:

P (Hij|λ) =
1

2π|Σij|1/2
exp

(
−1

2
HT
ijΣ
−1
ij Hij

)
(B.18)

where Σij is de�ned in Equation B.9.

Since the distribution of scattering in each voxel is independent of the scattering in other

voxels, the overall probability of the set of hidden data is the product of each probability

in Equation B.18. Hence, the log likelihood can be written as:

log(P (H|λ)) =
∑
j≤N

∑
i:Lij 6=0

(
− log λj −

HT
ijA
−1
ij Hij

2λjp2
r,i

)
+ C (B.19)

where pr,i = 13.6/pi is the factor seen in Equation 4.1 and C = − log(2π) − 2 log pr,i −
log |Aij| is a sum of constant terms not containing λ.

The procedure for arriving at the conditional expectation is explained in Ref. [13], where

we �nd that the Q function is:

Q(λ;λn) = C +
∑
j≤N

−Mj log λj −
1

2λj

∑
i:Lij 6=0

Snij

 (B.20)

where Mj is the number of muons for which Lij 6= 0 and Snij is de�ned as:

Snij ≡ EH|D,λn [p−2
r,iH

T
ijA
−1
ij Hij] (B.21)
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Ref. [13] explains through a lengthy but easy calculation how to get Snij as:

Snij = 2λnj + (DT
i Σ−1

Di
WijΣ

−1
Di
Di − Tr(Σ−1

Di
Wij))× p2

r,i

(
λnj
)2

(B.22)

where Di is the data vector de�ned at the beginning of this section, ΣDi
is the matrix

de�ned in Equation B.11 and Wij is de�ned in Equation B.12.

Before using this expression of Snij, it is necessary to incorporate the x and y information

with a simple average as:

Snij =
Snij,x + Snij,y

2
(B.23)

Finally, di�erentiating Equation B.20 with respect to λj, considering S
n
ij almost constant,

we �nd the iterative formula to update the value of λ as:

λn+1
j =

1

2Mj

∑
i:Lij 6=0

Snij (B.24)

B.4 From MLS to MLSD algorithm

The �rst step done was the evaluation of ∆θx, ∆θy, ∆x and ∆y, done in the PCA al-

gorithm which can be found in the �le makePCAfile.cxx in Ref. [23]. The new version

makePCAfileMLSD.cxx has a similar piece of code repeated 4 times (for x and y plane, for

the true and reconstructed variables):

float a1 = xzGradTrue[0];

float a2 = xzGradTrue[1];

float modp = sqrt(1.0+a1*a1); // 1/cos(theta0)

float modq = sqrt(1.0+a2*a2); // 1/cos(theta1)

thetaxzTrue = atan((a1 - a2)/(1.0 + a1*a2));

double Lxy = sqrt(1. + (a1*a1) + (yzGradTrue[0]*yzGradTrue[0]));

double xp = xzGradTrue[0]*(-verticalSeparation*1000./2.) + xzCutTrue[0];

double x1 = xzGradTrue[1]*(-verticalSeparation*1000./2.) + xzCutTrue[1];

dxTrue = (xp - x1)*Lxy/(cos(thetaxzTrue)*modp*modq);
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Before starting the code for the MLSD algorithm it is convenient to set a number of

de�nitions:

P =DT
i Σ−1

Di
WijΣ

−1
Di
Di

Wij =

[
Lij L2

ij/2 + LijTij

L2
ij/2 + LijTij L3

ij/3 + L2
ijTij + LijT

2
ij

]
=

[
Lij Bij

Bij Cij

]

Σ−1
Di

=

[
aDi bDi

bDi cDi

]

aDi =
p2
r,i

|ΣDi
|
∑
j≤N

λjCij

bDi =−
p2
r,i

|ΣDi
|
∑
j≤N

λjBij

cDi =
p2
r,i

|ΣDi
|
∑
j≤N

λjLij

|ΣDi
| =p2

r,i

(∑
j≤N

λjLij

)(∑
j≤N

λjCij

)
+

(∑
j≤N

λjBij

)2


(B.25)

The MLS algorithm is described in Subsection 2.4.4 and in Ref. [12]. It relies on three �les

written by William Brigg last year: GenerateLambdaMap.cpp, LambdaPcaTreeLooper.h

and LambdaPcaTreeLooper.C, which can be found in Ref. [23].

GenerateLambdaMap.cpp contains a Parabolic Interpolation with Brent's method in 1D

from Ref. [24] which minimises the cost function de�ned in Subsection 2.4.4. Since the

MLSD algorithm relies on Equation B.24 and does not need a maximisation (or minimi-

sation of ψ = −Q(λ;λn) as in the INFN algorithm). For this reason, instead of the Brent

iteration the new GenerateLambdaMapMLSD.cpp �le contained:

int iterations = 100;

LambdaPcaTreeLooperMLSD targetLooperMLSD(targetTree);

targetLooperMLSD.SLFill(0,muons,Nx,Ny,Nz);

targetLooperMLSD.LambdaFill(Nx*Ny*Nz);

targetLooperMLSD.SigmaFill();

for(int iii = 0; iii < iterations; iii++){

fx=targetLooperMLSD.Cost(0.1,0,muons);
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targetLooperMLSD.LambdaNew();

targetLooperMLSD.SigmaFill();

}

targetLooperMLSD.DrawSlices(100,1,Nx,Ny,Nz,fileNameLambda);

The second step was updating the header �le to LambdaPcaTreeLooperMLSD.h adding the

de�nitions of new variables and functions as de�ned below:

• T map of a map: corresponds to Tij, the 3D ray path length from the exit point of

the voxel to the exit point of the probed volume;

• B map of a map: corresponds to Bij = L2
ij/2 + LijTij;

• C map of a map: corresponds to Cij = L3
ij/3 + L2

ijTij + LijT
2
ij;

• S vector: corresponds to Sj =
∑

i:Lij 6=0 S
n
ij;

• M vector: corresponds to Mj =
∑

i:Lij 6=0 1;

• ∆θx, ∆θy, ∆x and ∆y vectors: correspond to scattering angles and displacements;

• aD, bD and cD vectors: correspond to the de�nitions in Equation B.25

The piece of code is simply:

std::map <int, std::map<int, double> > T;

std::map <int, std::map<int, double> > B;

std::map <int, std::map<int, double> > C;

double *S; // S_i is not the scattering angle!!!

double *M;

double *dThetax;

double *dThetay;

double *dx;

double *dy;

double *aD;

double *bD;

double *cD;

virtual void LambdaNew();

virtual void mm_mul (double A[][2], double B[][2], double C[][2]);
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To go from LambdaPcaTreeLooper.C to LambdaPcaTreeLooperMLSD.C the modi�cations

were many. Firstly, a matrix multiplication function has been added at the beginning of

the �le, to make it easier to evaluate Sij:

void LambdaPcaTreeLooperMLSD::mm_mul (double A[2][2],

double B[2][2], double C[2][2]){

int i, j, k;

double sum;

for (i = 0; i < 2; i++) {

for (j = 0; j < 2; j++) {

sum = 0;

for (k = 0; k < 2; k++) {

sum += A[i][k] * B[k][j];

}

C[i][j] = sum;

}

}

}

Secondly, the function LambdaPcaTreeLooperMLSD::SLFill was evaluating Lij, together

with Tij, Bij and Cij, and reading the information of scattering angles and displacements:

∆θx, ∆θy, ∆x and ∆y. This has been done de�ning a temporary map tempMapT with the

vertical distance from the centre of the voxel and the bottom of the probed volume, and

evaluating for each muon the factor Lxy as de�ned in Equation B.1. At the end of the loop

the maps were �lled as de�ned in Equation B.25.

Since the method of uploading the λ value is completely di�erent, I had to write a new

function as:

void LambdaPcaTreeLooperMLSD::LambdaNew(){

clock_t LambdaStart = clock();

double newLambda;

for(int voxId=0;voxId<fVoxelCount;voxId++) {

newLambda = S[voxId]/(2.*M[voxId]);

if(newLambda < LAMBDA_AIR) newLambda = LAMBDA_AIR;

if(isnan(newLambda)) newLambda = LAMBDA_AIR;

Lambda[voxId] = newLambda;
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}

printf("Lambda Alpha Fill: %f\n",

((double)(clock() - LambdaStart) / CLOCKS_PER_SEC));

}

Now, the function that was �lling the σ value in the INFN algorithm had to be changed to

a function that was �lling the vector aDi, bDi and cDi as in Equation B.25. The code is:

void LambdaPcaTreeLooperMLSD::SigmaFill(){

clock_t SigmaStart = clock();

static int doneInit=0;

static Double_t determinant=0;

if(!doneInit) {

aD = new double[fNumMuons];

bD = new double[fNumMuons];

cD = new double[fNumMuons];

DET = new double[fNumMuons];

}

doneInit++;

memset(aD,0,fNumMuons*sizeof(double));

memset(bD,0,fNumMuons*sizeof(double));

memset(cD,0,fNumMuons*sizeof(double));

for(std::map<int,map<int,double> >::iterator iter1 =

L.begin(); iter1 != L.end(); ++iter1){ //loop over muons

aD[iter1->first] = 0.;

bD[iter1->first] = 0.;

cD[iter1->first] = 0.;

determinant = 0.;

//loop over voxels

for(std::map<int,double>::iterator iter2 = (iter1->second).begin();

iter2 != (iter1->second).end(); ++iter2){

cD[iter1->first] += iter2->second * Lambda[iter2->first];

bD[iter1->first] += B[iter1->first][iter2->first]

*Lambda[iter2->first];

aD[iter1->first] += C[iter1->first][iter2->first]
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*Lambda[iter2->first];

}//end loop over voxels

cD[iter1->first] *= PreFactorEng[iter1->first];

bD[iter1->first] *= PreFactorEng[iter1->first];

aD[iter1->first] *= PreFactorEng[iter1->first];

cD[iter1->first] += 0.000049;

determinant = (aD[iter1->first]*cD[iter1->first])

- TMath::Power(bD[iter1->first], 2.);

aD[iter1->first]/=determinant;

bD[iter1->first]/=(determinant*(-1.));

cD[iter1->first]/=determinant;

} //end loop over muons

printf("Sigma Fill: %f\n", ((double)(clock() - SigmaStart)

/ CLOCKS_PER_SEC));

}

Finally, the function to evaluate the cost function has been modi�ed so as to evaluate Sj

and Mj. This can be done with this code:

double LambdaPcaTreeLooperMLSD::Cost(double Alpha, int first, int last){

double cost=0;

static double mat_W[2][2];

static double mat_D[2][2]; //SigmaD

static double mat_R[2][2]; // SigmaD*W

static double mat_Tot[2][2]; // SigmaD*W*SigmaD

static double trace;

static double product;

static int loopCount=0;

static double newLambda;

static int muonNum;

static double muonCost;

static double costVoxel;
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static int madeSM=0;

if(!madeSM){

S = new double[fVoxelCount];

M = new double[fVoxelCount];

madeSM++;

}

memset(S,0,fVoxelCount*sizeof(double));

memset(M,0,fVoxelCount*sizeof(double));

for(std::map <int, std::map<int, double> >::iterator muonIter=L.begin();

muonIter!=L.end();

muonIter++) {

muonNum=muonIter->first;

mat_D[0][0] = aD[muonNum];

mat_D[0][1] = bD[muonNum];

mat_D[1][0] = bD[muonNum];

mat_D[1][1] = cD[muonNum];

for(std::map<int,double>::iterator iter =

(muonIter->second).begin(); iter != (muonIter->second).end(); ++iter){

newLambda = Lambda[iter->first];

mat_W[0][0] = iter->second;

mat_W[0][1] = B[muonNum][iter->first];

mat_W[1][0] = B[muonNum][iter->first];

mat_W[1][1] = C[muonNum][iter->first];

LambdaPcaTreeLooperMLSD::mm_mul (mat_D, mat_W, mat_R);

trace = mat_R[0][0] + mat_R[1][1];

LambdaPcaTreeLooperMLSD::mm_mul (mat_R, mat_D, mat_Tot);

product = (mat_Tot[0][0]*dThetax[muonNum]*dThetax[muonNum]) +

(mat_Tot[1][0]*dThetax[muonNum]*dx[muonNum]) +

(mat_Tot[0][1]*dThetax[muonNum]*dx[muonNum]) +

(mat_Tot[1][1]*dx[muonNum]*dx[muonNum]);

S[iter->first] += 0.5*(2*newLambda +

(newLambda*newLambda*PreFactorEng[muonNum]*(product-trace)));

//now add the Y component

product = (mat_Tot[0][0]*dThetay[muonNum]*dThetay[muonNum]) +
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(mat_Tot[1][0]*dThetay[muonNum]*dy[muonNum]) +

(mat_Tot[0][1]*dThetay[muonNum]*dy[muonNum]) +

(mat_Tot[1][1]*dy[muonNum]*dy[muonNum]);

S[iter->first] += 0.5*(2*newLambda +

(newLambda*newLambda*PreFactorEng[muonNum]*(product-trace)));

M[iter->first] +=1.;

}

}

for(int voxId=0;voxId<fVoxelCount;voxId++) {

costVoxel = M[voxId]*TMath::Log(Lambda[voxId]) +

(S[voxId]*0.5/Lambda[voxId]);

cost+= costVoxel;

}

loopCount++;

return cost;

}

This function takes as input an α value and gives as output the value of the cost function,

even though is not necessary for the implementation of the MLSD algorithm as seen in

this report. However, this kind of algorithm could be easily changed with a maximisation

evaluating a gradient without changing the form of this function.
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