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CHAPTER 1 
INTRODUCTION 

1.1 Information from the Heavens 

When cosmic rays strike the Earth�s atmosphere, a cascade of many types of 

subatomic particles is created.  By the time this shower of particles reaches the Earth�s 

surface, it is comprised primarily of muons.  Muons are charged particles, having 

about 200 times the mass of electrons (indeed, muons may be thought of as �heavy 

electrons,� though they may be positively or negatively charged).  The surface of the 

Earth is bombarded continuously by these muons at a rate of about 10,000 muons per 

minute per square meter [1].  Most cosmic ray muons have sufficient energy to 

penetrate meters of rock.  One might think of this as �invisible rain,� constantly 

showering down from the sky, passing unnoticed through objects and life forms into 

the ground, to be eventually absorbed by the Earth. 

Are these cosmic ray muons of any practical use?  They represent no substantial 

source of energy.  They perform no usable �work� as they pass through objects.  

However, since muons are charged particles, they are easily detectable through means 

used by subatomic physicists for decades.  Muons are detected by capturing and 

amplifying the small deposition of energy that occurs when they pass through 

instruments.  The deposited energy is given up by the particle.  Muons, then, are 

detectable and experience changes as they pass though material.  Indeed, as will be 
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discussed later, other interactions occur as muons pass through matter, and the 

magnitudes of these changes are related to properties of the material itself.   

Although cosmic ray muons were metaphorically referred to in terms of �rain,� 

muons actually arrive not strictly from vertically overhead, but from angles covering 

the upper hemisphere (though preferentially from overhead, and quite sparsely from 

angles nearing horizontal).  Since cosmic ray muons are detectable, carry information 

as they pass through material, and continuously bombard any position on the Earth�s 

surface from many overhead directions, one might wonder:  Could these cosmic ray 

muons be used as some sort of 3D probe?  In other words, could one use the cosmic 

ray muon flux to probe an object of unknown structure / material composition to 

enhance our knowledge about that object, as illustrated in Figure 1.1? 

Such a probe using cosmic ray muons would have some attractive features.  

Foremost would be that no additional radiological dose would be applied to the object.  

Whether or not we mine the information, the object will be illuminated with cosmic 

ray muons.  This is a key advantage over x-ray radiography, for instance, wherein an 

object receives a radiological dose that must be carefully managed to avoid 

undesirable effects, particularly if the object is a living being.  Of course a related 

additional attractive feature of using cosmic ray muons is that no manufactured 

radiographic source is required (in a sense, one gets �something for nothing�).  

Another potential feature of a cosmic ray muon probe is that, since muons are so 

highly penetrating, very thick, dense objects could be examined. 
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Cosmic Ray Muon Tracks

 
Object of Interest?

 
Figure 1.1 Illustration of cosmic ray muons passing through an object.  Measuring 

changes induced in the muons during this passage could reveal 
information about the object. 

1.2 A New Form of Radiography 

In 2001 Christopher Morris and William Priedhorsky of Los Alamos National 

Laboratory (LANL) considered a novel form of radiography.  Their idea was to make 

use of the multiple Coulomb scattering1 experienced by cosmic ray muons passing 

through objects to segregate materials of high and low atomic density.  Morris and 

Priedhorsky put together a small team of researchers at LANL, including the author.  

The goal of this team was to provide proof of principle for cosmic ray muon 

radiography.  To achieve this goal the team outlined four primary objectives: 
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1 Multiple Coulomb Scattering (MCS) is one of the interactions that occur when 
charged particles move through matter.  MCS will be discussed in detail in Sections 
2.2.3 and  3.2. 



 

• Build a small prototype and gather experimental data. 
• Implement a Monte Carlo simulation of the experiment. 
• Develop an object reconstruction algorithm. 
• Produce reconstructions of experimental data (to prove the concept) and 

simulated data (to validate understanding). 
 

By 2003 these objectives were achieved, as documented in [2].  A new form of 

radiography was introduced � never before had radiographs of small objects been 

made using passive cosmic ray muons2.  A significant amount of press attention 

followed, and cosmic ray muon radiography was featured in Physics Today [3], on 

National Public Radio [4], and several websites, including those of National 

Geographic [5], Science News [6], and the BBC. 

1.3 The Author�s Role and this Dissertation 

Development of cosmic ray muon radiography continues.  Though this 

development was and is the product of a team effort, some portions were the result of 

independent, individual work by the author.  The author�s intent to produce a doctoral 

dissertation was understood by the research team, so the following areas were left to 

the author to maintain intellectual integrity: 

• Construction and execution of the experimental prototype. 
• Development of a new 3D tomographic reconstruction algorithm based on the 

theory of multiple scattering. 
• Development of mathematical framework whereby the process can be described. 

 

                                                 
2 Imaging of large (mountain sized) objects using the differential attenuation of cosmic 
ray muons has been discussed in the literature, as will be detailed in Section 2.3. 
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This dissertation will be concerned primarily with those topics.  Where 

supporting ideas or work are the products of the development team or individual 

collaborators these items will be credited by referencing publications of the team. 

1.4 A Potential Application � Nuclear Contraband Detection 

The major contributions of this dissertation will deal with the methodological 

aspects of cosmic ray muon radiography rather than applications.  However, the 

LANL work was funded to address a special application, and proper perspective may 

be gained through introduction of that application. 

The September, 2001 tragedy at the World Trade Center in New York 

dramatically heightened the nation�s sensitivity to potential homeland threats.  

Undoubtedly the most frightening is the detonation of a nuclear device in a major city.  

The enormous consequence of such an event has motivated substantial effort into the 

development of strategies to prevent it.  One such strategy is to improve the control of 

nuclear material at its source, and another is to increase the likelihood of detection of 

illegal transport of these materials at transportation checkpoints such as border 

crossings. 
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Weapons grade nuclear material is, of course, radioactive, but detection of the 

material via radiation detectors can be thwarted by a small amount of lead shielding 

[3].  Conventional x-rays are not sufficiently penetrating to reveal nuclear material 

within typical cargos without the use of very high energy rays that would pose health 

hazards [7].  Other potential detection methods exist, but none have the particular 

advantage of muon radiography:  the lack of application of any artificial radiological 

dose to the subject.  If proven feasible for this application, inspection of cars and 



 

trucks could be performed without requiring operators and passengers to exit the 

vehicles. 

1.5 Dissertation Outline 

Chapter 2 presents background information on several pertinent topics.  Cosmic 

ray muons, their formation in the atmosphere, and the muon flux at the Earth�s surface 

are described.  The physics of interaction of muons with material is summarized.  

Some relevant prior historical work is reviewed.  Finally pertinent background on 

techniques for computed tomography is presented. 

Details of our specific concept for cosmic ray muon radiography appear in 

Chapter 3.  Multiple Coulomb scattering as an information source for radiography will 

be explored in more detail.  The basic objective of Cosmic Ray Muon Radiography 

will be defined as the segregation of high, medium and low Z (atomic number) 

materials.  The sensitivity of MCS to material Z will be established through some 

numerical examples.   

 6 

In Chapter 4 the framework for tomographic reconstruction using the stochastic 

multiple scattering signal will be presented, contrasted with a standard tomographic 

framework for a deterministic information source.  The first of two image 

reconstruction algorithms also appear in Chapter 4.  The Point of Closest Approach 

(PoCA) algorithm was developed fairly early in this project as a means to produce 

reconstructions of experimental datasets, but the strengths and weaknesses of the 

algorithm will be first illustrated through simulated examples in Chapter 4.  The 

experimental proof of principle will be discussed in Chapter 5, including 

reconstructions made using the PoCA algorithm. 



 

In Chapter 6 a new tomographic algorithm, the Maximum Likelihood Scattering 

and Displacement (MLSD) Algorithm, will be presented.  This algorithm is founded in 

traditional tomographic principles, but differs fundamentally from previous methods 

due to the stochastic nature of the cosmic ray muon radiography information source.  

The MLSD algorithm will be shown, via simulated results, to provide reconstructions 

quite superior to those obtainable with the PoCA algorithm. 

The dissertation will conclude in Chapter 7 with a summary of the material 

presented.  Supportive material will be delivered in several Appendices. 
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CHAPTER 2 
BACKGROUND 

This chapter introduces background information pertinent to the use of cosmic 

ray muons for radiography.  Sections 2.1 introduces the muon, explains how these 

subatomic particles are created in the atmosphere from cosmic rays, and describes the 

flux of cosmic ray muons at the Earth�s surface.  Section 2.2 gives details on how 

muons interact when passing through material.  This is followed by a review of some 

previous efforts to use cosmic ray muons as information probes in Section 2.3, and a 

discussion of some relevant research into radiography using other charged particles in 

Section 2.4.  This chapter concludes in Section 2.5 with a review of the basics of 

computed tomography and a summary in Section 2.6. 

2.1 Cosmic Rays & Muons 

2.1.1 Primary Cosmic Rays and the Atmospheric Cascade 

Although cosmic radiation is often thought to come from the sun, in truth 

cosmic radiation comes generally from outside the solar system [1].  Cosmic rays 

striking the Earth�s atmosphere are hence composed primarily of stable particles and 

nuclei which survive the trip.  When these �primary� cosmic rays strike the Earth�s 

atmosphere, interactions take place which generate additional �secondary� particles.  

Interactions of these secondary particles create more particles, and a cascade of 

particles results. 

8 



 

It is beyond the scope of this document to dwell on the details of the nuclear 

physics involved in creating the secondary cosmic ray flux at the Earth�s surface.  

However, the basics may be described in simple terms.  An individual proton ( p ) or 

nucleus strikes the atmosphere and collisions with atmospheric nuclei release 

secondary particles known as pions (π ).  The primary proton loses energy via these 

collisions, but while it survives many pions may be produced.  Pions may be 

positively or negatively charged or may be neutral.  Charged pions decay quickly to 

like charged muons (µ ).  Neutral pions decay to gamma rays (γ ), some of which 

produce electron ( ) / positron ( e ) pairs which generally do not reach the surface.  

Muons lose energy as they pass through the atmosphere, and eventually decay to 

electrons or positrons, but most cosmic ray muons are sufficiently energetic to reach 

the surface.  Figure 2.1a illustrates this cascade.  Because muons do not interact 

hadronically and have a relatively longer lifetime than other charged particles 

generated in the cascade, they dominate the surface spectrum, as illustrated in Figure 

2.1b.  Muons have a rest mass of 105.7 MeV [1], about 200 times that of electrons, 

and are sometimes referred to as �heavy electrons.�  They have a mean life of 2.2 µs 

[1], and may be positively or negatively charged. 

−e +
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Figure 2.1 Illustration of the particle cascade produced in the atmosphere from a 

primary cosmic proton (a).  Altitude variation of the main components 
in the cascade (b) (From [8], used with permission). 

2.1.2 The Muon Spectrum at the Earth�s Surface 

Muons arrive at a point on the Earth�s surface from angles spanning the upper 

hemisphere with a wide range of energies.  The angle and energy distribution reflects a 

convolution of the production spectrum, energy loss in the atmosphere, and decay.  

The surface spectrum varies with altitude, geophysical location, and the level of solar 

activity (since solar activity can modulate the primary cosmic ray spectrum).  Many 

researchers have experimentally documented the muon spectrum at various locations 

and altitudes and have modeled the production process ([9-13], for example). 

Illustrative data taken from two experiments is shown in Figure 2.2, for arrival 

angles of near 0° and 75°.  Analytical models such as that presented in [9], coupled 
 10 



 

with such experimental data, have been used to develop �muon generators� for 

simulation purposes.  Results from a model developed by Blanpied [14] are shown 

with the experimental data in Figure 2.2.  More information about the Blanpied model 

may be found in Appendix A. 

Experimentalists often refer to the following �rules of thumb� to describe the 

muon spectrum [1]: 

• The energy (p) distribution is almost flat for energies below 1 GeV, and falls as 
 for energies above 10 GeV.  The mean muon energy is 3-4 GeV. 7.2−p

• The flux is greatest at the zenith, and falls approximately as cos , where ( )θ2 θ  is 
plane angle from vertical. 

• The overall muon rate is about 10,000 m-2·min-1 for horizontal detectors, or 
about 1 particle through a fingernail sized area per minute. 

It is important to note that the muon rate is low enough (about 160 Hz in a 

square meter detector) to enable single event processing, but will be shown to be high 

enough to provide information in a reasonable amount of time in a radiographic 

scenario. 
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Figure 2.2 Experimental muon spectrum data for two arrival angles; 0° data taken 

from [11], 75 ° data from [10].  The model lines were generated from a 
model developed by Blanpied [14]. 

2.2 How Muons Interact with Matter 

Muons in the .1-1000 GeV energy range interact with matter in two primary 

ways: energy loss through electromagnetic interaction with electrons resulting in 

ionization, and deflection via multiple Coulomb scattering from interactions with 

nuclei, as illustrated in Figure 2.3.  Sufficient energy loss will cause a muon to stop, 

which is highlighted as a third �interaction�.  In the following three subsections each 

of these three interaction modes will be discussed. 
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Figure 2.3 Muon interactions when passing through matter.  Muons lose energy 

through ionization (left).  If enough energy is lost, muons will stop 
(center).  Muons are also deflected via multiple Coulomb scattering 
(right).  These interactions are shown separately for clarity, although all 
three are applicable to any particle. 

2.2.1 Energy Loss 

As muons pass through material and collide with electrons, these electrons are 

(predominantly) ejected from the atom.  The muon will lose energy equivalent to the 

ionization energy of the electrons with which it collides.  For muons in the .1-1000 

GeV energy range, about 2.2 MeV·of energy is lost per g·cm-2 of material traversed 

[1].  The energy loss of muons traversing 10 cm thicknesses of various materials is 

shown in Table 2.1. 

Table 2.1 Approximate energy loss experienced by muons traversing 10 cm of 
various materials. 

Material 
Volume 

Density, g·cm-3 
[1] 

Areal Density 
of 10 cm depth, 

g·cm-2 

Muon Energy 
Loss, MeV 

% Energy 
Loss for 3 
GeV Muon 

Water 1.00 10.0 22.0 0.7% 
Concrete 2.50 25.0 55.0 1.8% 
Iron 7.87 78.7 173.1 5.8% 
Lead 11.35 113.5 249.7 8.3% 
Uranium 18.95 189.5 416.9 13.9% 

 

 13 



 

Energy loss is a potential information source that could be tapped for 

radiography, since energy loss is proportional to the mass encountered by a particle 

traversing an object area.  However, a means for the precise measurement of energy of 

incoming and outgoing particles would be required, and such a measurement may not 

be simply or economically obtained. 

2.2.2 Range Out 

If enough energy is lost through ionization, a muon will stop (range out) within 

the material.  Precise calculation of the range of particles within materials involves 

integration of the energy loss relationship outside the energy range where the 2.2 MeV 

loss per g·cm-2 is appropriate, and the energy loss rate varies somewhat with material.  

However, we may approximate the range as the material depth at which all energy is 

lost, using the 2.2 MeV·cm2·g-1 figure.  Results are shown in Table 2.2 for the same 

materials as in Table 2.1, for various muon energies. 

Table 2.2. Approximate range of muons in various materials. 
  Range (m) of Muons with Energy 

Material Volume Density, 
g·cm-3 [1] 0.3 GeV 3 GeV 30 GeV 

H2O 1.00 1.4 13.6 136.4 
Concrete 2.50 0.5 5.5 54.5 
Iron 7.87 0.2 1.7 17.3 
Lead 11.35 0.1 1.2 12.0 
Uranium 18.95 0.1 0.7 7.2 

 

Interesting to note is that muons at the mean energy (~3 GeV) will penetrate 

about a meter of even very dense materials, and high energy muons will penetrate tens 

of meters of rock or metal.  Because the energy spectrum of cosmic ray muons is 

continuous and the average range is long, differential attenuation can be used to 
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radiograph large objects.  Indeed previous researchers have performed attenuation 

radiography of large objects using cosmic ray muons (see Section 2.3).  If the 

objective is to radiograph small objects, however, very few muons will range out 

regardless of material composition.  For instance, of the 10 cm cubes discussed in the 

previous section, only the uranium cube would stop muons with 0.3 GeV energy, and 

the mean energy of cosmic ray muons is ten times that.  Hence differential attenuation 

is not an appropriate information source for small objects. 

2.2.3 Multiple Coulomb Scattering (MCS) 

A muon (or any charged particle) passing through a material is deflected by 

many small angle scatters off of the nuclei of the material.  As illustrated two 

dimensionally in Figure 2.4, a particle traverses the material in a stochastic path due to 

these multiple scatters.  The particle emerges from the material at an aggregate 

scattered angle θ  and displaced from the un-scattered exit point by a distance x.  The 

angular scattering distribution may be approximated as Gaussian3,  

( ) 







−≅ 2

2

2
exp

2
1

θθ
θ σ

θ
σπ

θf  (2.1) 

with zero mean and a standard deviation given by [15]: 

radL
L

cpβ
σθ

 51
≅  (2.2) 

where p  and cβ , are the momentum (in MeV/c) and velocity of the incident particle, 

 is the depth of the material, and  is the radiation length of the material.  L radL
                                                 
3 The theory of MCS and a discussion of the Gaussian approximation appear in 
Section 3.2. 
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Radiation length is a characteristic amount of matter for electromagnetic interactions, 

and generally decreases with increasing material Z number.  Table 2.3 shows how the 

width of the scattering distribution changes for muons passing through 10 cm of the 

Table 2.1 materials. 

Particle with 
momentum p and 

velocity β 

 Material 
with 

radiation 
length Lrad L

x

 
Figure 2.4 Multiple Coulomb scattering of a charged particle through material.  

The magnitude of scattering is exaggerated for illustrative purposes. 

θ

Table 2.3 Approximate multiple scattering for muons passing through 10 cm of 
various materials. 

  RMS Scattering (milliradians) expected for 
Muons with Energy: 

Material Radiation 
Length, cm [1] 0.3 GeV 3 GeV 30 GeV 

Water 36.1 26.3 2.6 0.3 
Concrete 10.7 48.3 4.8 0.5 
Iron 1.76 119.2 11.9 1.2 
Lead 0.56 211.3 21.1 2.1 
Uranium 0.32 279.5 28.0 2.8 

 

MCS represents an information source that is almost as sensitive to material Z as 

energy loss.  Moreover, the measurement of muon scattering with milliradians 
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precision (by measuring particle position to millimeter level precision) is much more 

easily accomplished than measurement of particle energy to a few percent (requiring 

the generation of magnetic fields for spectroscopy).  It is the MCS signal that is used 

for cosmic ray muon radiography herein, as will be described in Chapter 3. 

2.3 Previous Work on Cosmic Ray Muon Radiography 
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Several researchers have investigated the use of cosmic ray differential 

attenuation or range radiography for large archaeological or geological objects.  E. P. 

George made the first such effort in 1955 [16].  George measured the depth of rock 

above an underground tunnel by making use of the attenuation of the cosmic ray flux.  

He measured the cosmic ray flux inside the tunnel and the incident flux outside the 

tunnel and inferred the rock depth from the ratio of these signals.  Luis Alvarez 

followed George�s work with his radiography of the Pyramid of Chepren at Giza, 

Egypt in the late 1960�s [17].  The Pyramids of Cheops (Chepren�s father) and Sneferu 

(his grandfather) were known to contain interior chambers at similar locations.  It had 

been speculated that Chepren�s Pyramid might also contain such interior chambers, 

but they had not been discovered.  Alvarez and his colleagues sought to locate (or 

disprove the existence of) these chambers by measuring the differential attenuation of 

the cosmic ray flux through Chepren�s Pyramid.  Alvarez and his colleagues placed 

muon counters in an existing underground chamber beneath the pyramids.  As they 

measured the count rate at various angles, they experienced higher count rates when 

pointing at the faces of the pyramid than when pointing at the corners since the path 

length of cosmic rays passing through the corners was longer.  The position of their 

underground chamber was not centered beneath the pyramid, and they were also able 



 

to see count rate differences when pointing at opposite faces that were proportional to 

that deviation from center position.  Armed with this confirmation of their method, 

they searched for hidden chambers and concluded that there were none. 

In subsequent years other researchers have followed Alvarez and used cosmic 

ray attenuation to make measurements on large objects.  Minato [18] produced a rough 

radiograph of the Higashi-Honganji Temple gate in Nagoya, Japan, using a simple 

hand held muon counter to measure flux attenuation.  Nagamine [19] measured the 

internal structure of Mt. Tsukaba and Mt. Asama using cosmic ray attenuation with the 

goal of volcanic eruption prediction.  In this case large angle (nearly horizontal) 

muons were required, since detectors were located 2 km to the side of the volcanoes, 

rather than beneath them, of course. 

These interesting experiments, and others like them, relied on attenuation of the 

cosmic ray muon flux passing through meters of dense material.  The MCS based 

radiography described herein, applied to much smaller, less dense objects, is 

fundamentally different, as will be seen. 

A recent novel use of cosmic ray muons has been described by Frlez, et. al [20].  

Their objective was to map the efficiency of cesium iodide crystals used for 

calorimetry.  Cosmic ray muons were used as a freely available probe to measure the 

efficiency of the crystals.  Muon detectors were arranged above and below a chamber 

containing several of the CsI crystals, and rays were tracked through the chambers / 

crystals.  For cosmic rays passing through a crystal, the path length and resultant 

expected energy deposition were calculated.  Hence, the response of the CsI crystals to 
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that energy deposition could be analyzed.  Though this application was quite different 

from that discussed herein, the particle detection and data acquisition system used in 

this effort was very similar to the experimental prototype that will be discussed in 

Chapter 5. 

In summary, cosmic ray muons have been used in the past as radiographic 

probes, but no previous attempt has been made to use the multiple scattering of cosmic 

ray muons through material as an information source. 

2.4 Previous Work on Charged Particle Radiography 

Multiple scattering of charged particles as a radiographic information source has 

been proven through proton radiography (pRAD) [21].  pRAD was invented at Los 

Alamos National Laboratory in 1995 and is currently used routinely for radiography of 

moderately dense objects that are difficult to image with x-rays.  pRAD is performed 

using an 800 MeV energy proton beam from a linear accelerator.  A schematic is 

shown in Figure 2.5. 
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Figure 2.5 Schematic of proton radiography beam line (courtesy Los Alamos 

National Laboratory, used with permission). 

Simply put, pRAD works by illuminating an object (labeled object in Figure 2.5) 

with a proton beam, producing multiple scattering.  The angular distribution of the 
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proton beam exiting the object is then locally (spatially) correlated with the projected 

density of the material through which the beam passed.  A clever arrangement of 

magnetic lenses transforms particle angle to radial position at the collimator (CL-1) 

location.  At the collimator location, particles with large scattering angle are 

attenuated.  For example, the black and blue rays might be removed.  Another 

magnetic lens re-transforms the particles back to the spatial coordinates at the image 

plane (IL-1).  So at the image plane, areas where the object induced high scattering are 

less populated with protons due to the collimation.  A proton to light converter and 

CCD cameras produce an image.  The pRAD system is often used to image dynamic 

events, with multiple images taken via proton pulses spaced closely in time.  

Additional collimator (CL-2) and imaging stations (IL-2) downstream provide for 

more image frames in such a dynamic sequence or for enhanced information if a 

different angle cut is used in the second collimator.  Sample pRAD images are shown 

in Figure 2.6.  pRAD imaging is based on large number statistics rather than the 

analysis of single events, and relies on a linear accelerator rather than a passive source.  

However, the pRAD method is pertinent to the consideration of cosmic ray muon 

radiography in that it provides proof of the feasibility of multiple scattering as a 

radiographic information source. 
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Figure 2.6 Sample images created via multiple scattering proton radiography 

(pRAD) (courtesy Los Alamos National Laboratory, used with 
permission).  The darker areas represent higher Z material. 

Charpak, et al. [22] used nuclear (hadronic) scattering of protons passing 

through material as an information source for radiography.  They used protons 

generated by an accelerator and detected particles scattered via hadronic interactions.  

By tracing incoming and outgoing trajectories to an intersection point they identified 

the point of scatter within an object volume, and used the information gathered from 

many scattered particles to reconstruct object density.  Muons have no hadronic 

interaction, so this work is not directly pertinent to cosmic ray muon radiography.  

However, one of the image reconstruction algorithms that will be presented later 

(PoCA) uses a ray tracing method that is quite similar to that used by Charpak. 

2.5 Overview of Computed Tomography 

Tomography refers to the reconstruction of an image or object from projections 

taken from many different directions.  Tomographic reconstruction and the associated 

signal processing is an area of active research, primarily in the fields of electrical 

engineering and mathematics.  The mathematics of this reconstruction process were 

analyzed early in the 20th century by Radon, as outlined in the historical review in 
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[23].  Widespread interest in tomographic imaging was spawned much later after the 

invention of the computed tomography (CT) x-ray scanner by Hounsfield [24], for 

which he received a Nobel Prize.  Since then the techniques for CT have been 

continuously evolved, taking advantage of the rapid advances in computing power 

over the last three decades.  A variety of information sources have been used for CT, 

including x-ray attenuation, reflection of radar pulses, gamma ray emission, 

ultrasound, and nuclear magnetic resonance.  Tomographic techniques have been used 

to reconstruct 3-dimensional objects from 2-dimensional proton radiography 

projections (see section 2.4) [25]. 

It is not necessary to cover herein the array of CT techniques and applications, 

many of which are highly specialized.  There are, however, two major families of 

techniques for reconstruction from projections: transform methods and algebraic 

methods.  The highlights of these two families will be discussed in the next two 

subsections. 

2.5.1 Transform-based CT 

Transform based methods are used in the bulk of CT applications.  

Unfortunately, it will be seen that transform methods are inappropriate for the research 

described herein.  However, the frequency domain interpretation of projection data 

allows for intuitive understanding of the reconstruction process and difficulties that 

can occur when data is limited, as is the case with cosmic ray muon radiography.  It is 

therefore instructive to outline the basics of transform based CT (summarized from a 

presentation in [23]). 
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Referring to Figure 2.7(a), one may mathematically express a projection through 

line integrals.  Let  represent some measurable function, characteristic of the 

object, which varies spatially (the tendency to attenuate x-rays, for example).  Passing 

a parallel beam of rays through the object, oriented at angle 

( yxf , )

θ , creates a projection 

, where the dimension t  may be described via the equation: ( )tPθ

θθ sincos yxt +=  (2.3) 

The projection may be expressed by the integration (known as the Radon Transform): 

( ) ( ) ( )dxdytyxyxftP −+= ∫ ∫
∞

∞−

∞

∞−
θθδθ sincos,  (2.4) 

The reconstruction problem is established by creating a number of projections, 

rotating through various angles as shown in Figure 2.7(b), and seeking to reconstruct 

 from those projections. ( yxf , )

It is in the frequency domain that the nature of sampling the image via 

projections becomes clear.  First define the 2-dimensional Fourier transform of the 

object function: 

( ) ( ) ( )dxdyeyxfvuF vyuxj +−∞

∞−

∞

∞−∫ ∫= π2,,  (2.5) 

The one-dimensional Fourier transform of a projection is: 

( ) ( ) dtetPwS wtj π
θθ

2−∞

∞−∫=  (2.6) 

The Fourier Slice Theorem allows interpretation of the projections in the frequency 

domain.  To illustrate the theorem, consider the Fourier transform of the object along a 

line in the frequency domain where 0=v : 
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Figure 2.7  Illustration of projections in CT.  An object and its projection at angle 

θ  (b), and multiple projections at different angles (from [23], used with 
permission). 
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( ) ( ) ( ) dxedyyxfdxdyeyxfuF uxjuxj ππ 22 ,,0, −∞

∞−

∞

∞−

−∞

∞−

∞

∞− ∫ ∫∫ ∫ 



==  (2.7) 

Now, writing the equation for the projection when 0=θ : 

( ) ( ) ( ) ( )∫∫ ∫
∞

∞−

∞

∞−

∞

∞−= =−= dyyxfdxdytxyxftP ,,0 δθ  (2.8) 

Note that the term in brackets in Eq. (2.7) is just the projection defined in Eq. (2.8).  

Substituting the result of Eq. (2.8) into Eq. (2.7): 

( ) ( ) dxexPuF uxj π
θ

2
00, −∞

∞− =∫=  (2.9) 

Eq. (2.9) may be recognized as the one-dimensional Fourier transform of the 

projection , therefore: 0=θP

( ) (uSuF 00, == θ )  (2.10) 

This result is independent of the specific angle θ , and leads to the Fourier Slice 

Theorem, which is illustrated in Figure 2.8(a) and (b), and may be stated as: 

The Fourier transform of a parallel projection of an image  taken at angle ( yxf , )
θ  gives a slice of the two-dimensional transform, ( )vuF , , subtending an angle 
θ  with the u -axis.  In other words, the Fourier transform of   gives the 
values of  along the line BB in Figure 2.8(b). 

( )tPθ
( vF , )u

Therefore, one may interpret multiple projections at different angles as 

providing sampling of the frequency domain representation of the object, as illustrated 

in Figure 2.8(c), where the dots show sampled points obtained when using an FFT and 

finite data.   
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Figure 2.8  Illustration of how projections may be interpreted in the frequency 

domain.  A projection of an object at angle θ  in the space domain (a), 
when Fourier transformed, gives a slice of the two-dimensional 
transform of the object at an angle θ  (b).  The FFT of multiple 
projections represents samples of the object FFT as shown in (c) (from 
[23], used with permission). 

It may be seen from Figure 2.8(c) that, the farther from the center, the sparser 

the density of the sampled points.  In reconstructing the object from projections, this 

implies that there will be more error in the high frequency content of the image than in 
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the low frequency content.  The fewer the number of projections, the less accurate the 

fine detail in the reconstruction.  Or imagine that the projection set contained no 

projections from angles near horizontal (θ  nearing ± 90°).  In this case ambiguity will 

exist in the vertical structure of the reconstruction.  Insufficient number of samples in 

each projection, or an insufficient number of projections can also lead to artifacts from 

aliasing due to under sampling. 

The basic transform based reconstruction algorithm used in most straight ray 

tomographic applications is known as filtered backprojection.  Making use of the 

Fourier Slice Theorem, the general algorithm is: 

1. Measure the projections. 
2. Transform the projections. 
3. Apply a filter to the transforms of the projections to properly interpolate them 

in the frequency domain. 
4. Compute the inverse transform of the filtered projections. 
5. Sum over the image plane all the inverse transformed filtered projections to 

obtain the reconstruction. 
 

Again, the lack of an evenly spaced set of projections prohibits the use of the 

filtered backprojection algorithm or other transform based methods for cosmic ray 

muon radiography.  The next section presents a method better suited to serve as a 

foundation for the work that will be presented herein. 

2.5.2 Algebraic-based CT 

The filtered backprojection algorithm presented in the previous section is 

simple, efficient, and works well under certain conditions.  However, projections 

evenly spaced over at least 180° are generally required.  Ray paths must be 

predominantly straight � significant bending due to refraction, for example, will cause 
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problems.  In some cases (as in the research presented herein) there is no notion of a 

projection at all.  For such applications, algebraic based CT may provide acceptable 

reconstructions.   

Algebraic methods consist of expressing the unknown object in terms of a finite 

set of parameters, and posing the reconstruction problem as a set of algebraic 

equations in terms of those parameters and the measured �projection� data.  Then a 

solution for the parameters is sought.  Following is a summary of the basics of 

Algebraic Reconstruction Techniques (ART), again following Kak and Slaney [23]. 

f1 f2 …

… fN-1 fN

f(x,y)

Pi Pi+1

P1

P2

PM

PM-1wij: pathlength
of ray i

through cell j

 
Figure 2.9 In Algebraic Reconstruction Techniques (ART), the object is broken 

into a discrete grid, and ray projections are modeled as weighted sums 
of cell values. 

Begin by superimposing a square grid over the object, as shown in Figure 2.9 for 

a two dimensional case.  Assume that the function ( )yxf ,  is constant within each cell, 

and denote these discrete estimates as .  In Figure 2.9, a few rays are Nfff ,...,, 21
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shown passing through the object at different angles � assume that there are a total of 

M  rays in the dataset.  Here, the term projection refers to the line integral of a single 

ray in terms of the discrete version of the object.  For a given ray, the projection may 

be expressed as: 

j

)(0f

∑
=

=
N

j
jiji fwP

1
 (2.11) 

where the weight  represents the normalized path length of the ray  through cell ijw i

.  For simplicity assume that the rays are lines � if the rays had some finite width 

then the weights would become fractions of the cell areas.  The aggregate dataset may 

be expressed through the matrix equation: 

WfP =  (2.12) 

Eq. (2.12) is a set of linear equations and the typical set of numerical methods 

may be applied to seek a solution.  However, some complicating factors exist: 

1. The size of  can be enormous.  If the object grid is 256 x 256, for example, 
and we have at least one ray per element, then the size of  is about 65,000 x 
65,000.  For three dimensional reconstruction,  is huge even for small sized 
problems. 

W
W

W

2. The system is often underdetermined, i.e., NM < . 
3.  may not be invertible, even if W NM = . 
4. The matrix , the vector , and the function W P ( )yxf ,  are typically 

nonnegative, so we desire a solution for f  that has nonnegative elements. 
 

Nevertheless, iterative numerical techniques may be applied to search for a 

solution to Eq. (2.12).  One such method, the original ART algorithm, was developed 

in the 1970�s by Gordon [26].  The algorithm starts with an initial guess for f ;  call it 

.  This estimate will be iteratively adjusted � at iteration  the guess will be k
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termed f .  Consider a particular measured projection , and define Q , the 

expected projection given the guess f , as: 

)(k

)(k
i

Q

iW

iP i

)(k

)(k +1




+k )1(

iN

(k)
ifW=  (2.13) 

where  is the i  row of the weight matrix .  To enforce consistency between  

and Q , an adjustment could be made to obtain 

th W P

( )1+kf  as follows: 

T
i

i
T
i

)( W
WW

ff
(k)
iik QP −

+=  (2.14) 

In other words, take the difference between the measured projection for a ray 

and the projection that would result from our estimate, normalize that difference using 

the norm of that ray�s weight vector, then weight the correction across elements of f  

by that ray�s weight vector.   

The update equation in the original form of ART [26] was simplified from Eq. 

(2.14) by replacing the element in the weight matrix by 0�s and 1�s, depending on 

whether the centers of image cells were within each finite width ray.  A positivity 

constraint was also imposed, resulting in: 




 −
+=

i

k
iik

N
QP )(

)(,0max ff  (2.15) 

where  is the number image cells with non-zero weights for the i  ray, and the 

correction is applied only to those image cells.   

th

A plethora of refinements and application specific revisions were proposed by 

Gordon, and many more have been made to ART over the years.  One particular 

variation, sometimes called �ART with a Damping Factor,� addresses the lack of 
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convergence of ART when noise is present in the projection data by introducing a 

�damping factor:� 








 −
∆+=+

i

k
iikk

N
QP )(

)()1( ,0max ff  (2.16) 

where the damping factor, 0 1<∆< , can be adjusted to achieve convergence.  This 

version of ART may be seen as quite similar to the LMS algorithm for tuning adaptive 

filters developed by Widrow [27], and more generally known as stochastic gradient 

descent [28].  We may therefore view algebraic reconstruction techniques as a special 

form of gradient descent optimization. 

In summary, algebraic reconstruction techniques provide a framework for 

creating tomographic reconstructions when data do not conform to the requirements of 

transform based techniques.  It has been shown that ART is closely related to gradient 

descent optimization of a linear system, and so exists within a much larger general 

framework.  The maximum likelihood reconstruction algorithm that is presented in 

Chapter 6 is built upon that framework. 

2.6 Summary 

This chapter summarized some background information important in the 

development of cosmic ray muon radiography.  The technique is possible, of course, 

due to the presence on the Earth�s surface of a �shower� of cosmic ray muons from the 

heavens.  The creation mechanism was reviewed, and some details describing the flux 

of cosmic ray muons at the surface were presented.  Three major interaction modes 

occurring when muons pass through material were described.  One of those modes, 

range out, has been used in all past efforts to interrogate objects using cosmic ray 
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muons.  A few of the most important of these efforts were described.  A second 

interaction mode, multiple Coulomb scattering, forms the information source for the 

new form of radiography described herein.  A prior demonstration of multiple 

scattering radiography, proton radiography (pRAD), was described.  pRAD, wherein 

images are formed based on the multiple scattering of protons from a beam formed by 

a linear accelerator, was the inspiration for cosmic ray muon radiography.  Finally, an 

important part of cosmic ray muon radiography is to form 3D images from 

information gathered by interrogating muons.  Therefore, the basics of computerized 

tomography were outlined. 
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CHAPTER 3 
CONCEPT AND PRELIMINARY CALCULATIONS 

In this chapter the concept for cosmic ray muon radiography will be outlined.  A 

general description of the basic concept will first be first provided in Section 3.1.  

Following in Section 3.2 will be an analysis of the sensitivity of multiple Coulomb 

scattering (MCS) to material Z number.  In this discussion the problem context for 

muon radiography will be introduced, that being the segregation of low, medium and 

high Z materials from one another in modest exposure times.  In Section 3.3 the 

feasibility of solving that problem with muon radiography will be examined via a 

series of simulated analyses of such material segregation with minute order exposure 

times.  The issue of momentum spread will be addressed, and a new concept for the 

use of MCS to measure of muon momentum will be introduced and analyzed.  Section 

3.4 summarizes these discussions. 

3.1 The Cosmic Ray Muon Radiography Concept 

Section 2.1 described the cosmic ray cascade that results in a sea level muon 

flux of approximately 10,000 m-2·min-1.  Section 2.2 discussed how muons interact 

with matter and introduced multiple Coulomb scattering (MCS) as an information 

source pertaining to the material through which the muons pass.  Section 2.4 

referenced proton radiography, which provides a prior demonstration of the feasibility 

of using multiple scattering of charged particles for radiography.  Finally, Section 2.5 

reviewed how object structure may be reconstructed from the information provided by 
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interrogating rays through tomographic methods.  This section describes a concept for 

building on this body of information to radiograph and reconstruct objects via the 

information carried by the multiple scattering of cosmic ray muons. 

The concept is illustrated in Figure 3.1.  Muon detectors are located above and 

below a target volume wherein objects of interest are located.  Individual muons are 

tracked into and out of the object volume.  This is possible due to the low event rate 

(about 160 Hz per square meter of detector area).  Two position sensitive detectors are 

located above the object volume, and two below.  Each detector measures particle 

position in two orthogonal coordinates.  Via the pair of detectors above the object 

volume the angle of the incoming track may be calculated.  Muons pass through the 

object volume, and those that pass through dense objects are scattered more than those 

that pass through less dense objects.  Rays that do not pass through objects are not 

scattered (except through the detectors, which are designed to scatter the particles very 

little).  Scattered muon tracks are measured by the bottom pair of detectors.  The bend 

angle of each track is computed.  As many rays pass through the object volume from 

different angles and positions, an aggregate dataset is created.  Tomographic 

reconstruction techniques may then be applied to this dataset to reconstruct the 

structure of objects within the object volume in terms of their tendency to scatter 

muons. 

The next section examines the relationship between materials and muon 

scattering in more detail, and further defines the material identification problem 

context. 

34 
 



 

 
Figure 3.1 The cosmic ray muon radiography concept. 

3.2 Using MCS to Segregate High, Medium and Low Z Materials  

As described in Section 2.2.3, a charged particle such as a muon, when passing 

through material, will be scattered from its straight path by multiple electromagnetic 

interactions with the nuclei of material.  The path of an example muon is illustrated in 

Figure 3.2.  Upon exiting the material, the new track of the muon may be described by 

the projected scattering angles xθ , yθ  and displacements x∆ , y∆  where all of these 

values are expressed relative to the orientation and position of the incident muon.  It is 

intuitively clear that high density / high atomic weight materials wherein interactions 

with nuclei are more probable might tend to produce a higher degree of muon 

scattering than lower density, lower atomic weight materials.  A theory of multiple 
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scattering which relates interaction probability to scattering was introduced by Moliere 

[29] and has since been expanded and refined by others [30, 31].  Moliere�s results 

may not be presented concisely, but it turns out that a simple Gaussian approximation 

works well for the central 98% of the scattering distribution [32].  For one of the 

projected scattering angles, xθ : 





−( ) 




≅ 2

2

2
exp

2
1

θθ
θ σ

θ
σπ

θ x
xx

f  (3.1) 

The other projected scattering angle, yθ , is independent from but identically 

distributed to xθ  [1].  The standard deviation of both distributions may be expressed 

approximately in terms of material properties [15]: 

radL
L

p
 51

≅θσ  (3.2) 

where p  is the particle momentum in MeV/c,  is the depth of the material, and  

is the radiation length of the material [substitution of the velocity 

L radL

1≅cβ  for muons 

has been made in Eq. (2.2) to arrive at Eq. (3.2). 
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Figure 3.2 Multiple scattering in two dimensions 

Radiation length, , is a characteristic amount of matter for electromagnetic 

interactions.  Formally, it is the mean material depth at which a high-energy electron 

will lose all but 

radL

e1  of its energy when passing through that material [1].  Radiation 

length may be expressed as a pure depth (e.g., in cm) or as an areal density (e.g., in 

g·cm-2).  When expressed as an areal density, radiation length falls monotonically with 

increasing material Z (atomic number), as shown in Figure 3.3.  When expressed as a 

depth, volume density, hence the normal state (solid, liquid, gas) of the material 

affects the number.  Radiation length in cm is still strongly a function of material Z, 

though not as cleanly as the areal density form. 
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Figure 3.3 Radiation length as a function of material Z. 

It is clear from Eq. (3.2) that a large depth of a lower Z (higher ) material 

may produce equivalent scattering to that produced by a higher Z (lower ) 

material.  Scattering is also influenced by particle momentum.  To identify material it 

is necessary to normalize for these two effects.  Establishing a nominal muon 

momentum  and squaring both sides of Eq. (3.2): 

radL

Lrad

0p

L
LpL

L
p radrad 
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The scattering density of a material with radiation length  is herein defined as: radL

LLp rad
Lrad

0
22

0

151 θσλ =







≡  (3.4) 
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Scattering density therefore expresses the mean square scattering expected for nominal 

momenta muons passing through a unit depth of a material with radiation length . radL

Figure 3.4 displays the scattering densities of various common liquid or solid 

materials, making use of Eq. (3.4) and choosing GeV 30 =p .  Though scattering does 

not increase monotonically with atomic number (tungsten scatters more than lead, for 

instance), there is a clear separation between the scattering induced by common low, 

medium, and high Z materials4. 

The problem context for cosmic ray muon radiography is therefore defined to be 

segregation of objects of low, medium, and high Z materials from one another.  This 

task will be examined in more detail in the next few sections. 

                                                 
4 There are materials that do not fall cleanly into one of these categories.  For instance, 
silver (Z=47) is of higher Z than copper, but lower than lead.  Centimeter depths of 
silver are arguably uncommon in trucks or shipping containers, for instance, but such 
potentially ambiguous materials may have to be considered in other problem contexts. 
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Figure 3.4 Scattering density [per Eq. (3.4)] of various materials. 

3.3 Preliminary Calculations on Material Segregation 

It has been claimed above that the scattered muons carry information that can 

allow segregation of high, medium, and low Z materials.  It has also been claimed that 

the muons rate is low enough to allow individual particle detection and analysis.  A 

logical question is:  Can material segregation be made in a reasonable amount of time?  

This section addresses that question via simplified analytical and simulated analysis. 

3.3.1 Material Discrimination with Monoenergetic Muons 

Consider three cubes, 10 cm on a side, one formed of concrete (low Z), another 

of iron (medium Z), and a third of uranium (high Z).  Cosmic ray muons pass through 

these blocks, and the scattering of the muons will be used to segregate them.  The 

tracks of the muons are measured, and scattering angles in each of the two orthogonal 

coordinates are computed.  These measurements xθ  and yθ  are samples from 
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independent, identically distributed random variables [1].  For simplicity, assume that 

scattering is normalized to account for different path lengths.  Ignore the effect of 

muon energy spread for the time being and assume that all particles arrive at a nominal 

momentum of .  For each cube the scattering density GeV 30 =p L2
0θ

σλ =  may be 

computed. 
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From the measurement of scattering of  muons, mean square scattering per 

unit depth is calculated for each cube.  For a given cube, this calculation is an estimate 

of the variance of the underlying approximately Gaussian scattering distribution: 

N

( +=
iyL

22
2�� 0 θ

σ
λ θ  (3.5) )

The random variable: 

λ
2NX ≡  (3.6) 

is distributed as a chi square distribution with  degrees of freedom [33].  The 

central 99% confidence bounds on each scattering density estimate may be expressed 

as: 

N2

 (3.7) 

high
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where  denotes the inverse chi squared c.d.f. with M degrees of freedom 

evaluated at probability 

(αχ 1−
M

. 
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At the typical sea-level flux, about 100 cosmic ray muons pass through these 

cubes per minute.  So for each cube, in one typical minute, 200 measurements of 

scattering angle are obtained.  Using Eqs. (3.2) and (3.5), Table 3.1 presents the 

confidence intervals expected in one minute of muon tracking.  Clearly the three 

materials may be segregated in less than one minute. 

Table 3.1 Confidence intervals on scattering density after one minute of tracking 3 
Gev muons through 10 cm of various materials. 

 Scattering Density, milliradians2/cm 
Material Lower CL Actual Upper CL 
Concrete 1.8 2.3 3.0 
Iron 10.8 14.2 18.1 
Uranium 59.5 78.1 99.7 

 
As verification, Eq. (3.2) was used to randomly generate scattering of 3 Gev 

muons through the three materials.  200 scattering measurements were generated at a 

time,  estimates were calculated for each cube, and this experiment was repeated 

5,000 times.  Results are shown in Figure 3.5 with central 99% percentiles shown.  

These results verify those of Table 3.1 and illustrate the separability of these materials. 

λ�

 
Figure 3.5 Discrimination of materials using scattering of 3 GeV momentum 

muons with ~1 minute of exposure (simulated results).  Central 99% 
percentiles are shown. 
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Of course there are several additional factors to be considered that will decrease 

the margin of separability shown in Figure 3.5.  Real detectors will exhibit 

measurement error and less than perfect efficiency in detecting muons and these 

practical considerations will widen the distributions shown in Figure 3.5.  These 

baseline results are presented only to show rough feasibility which motivates more in 

depth study.  The first complication that will be addressed in the next section is 

momentum spread. 

3.3.2 Material Discrimination with Realistic Muon Momentum Spread 

The arrival angle and momenta distribution of cosmic ray muons was discussed 

in Section 2.1.2.  This distribution has been experimentally documented and has been 

modeled via a mixture of theoretical and empirical methods.  One such model, 

developed by Gary Blanpied [14] is described in Appendix A.  Code for the 

�generation� of simulated muons drawn from the documented arrival zenith angle (ϕ ) 

and momenta ( p ) spectrum ( )ϕϕ ,, pf p  was developed based on this model.  Simulated 

results presented in this section were performed using muons drawn from the Blanpied 

Generator. 

If muon momentum is not fixed, then the scattering of a particular muon 

becomes a function not only of the material through which it passed, but also of the 

momentum of that particular muon.  Clearly the variance in muon to muon momentum 

will contribute to additional variance in the scattering signal over and above the 

counting statistics described in the previous section.  Moreover, if absolute rather than 

purely relative material information is sought (i.e., in addition to segregating materials 
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of dissimilar Z, the absolute Z level (high, medium, low) of materials is required), then 

some means to normalize for momentum variation is desirable.   

If an estimate of individual muon momentum is available, then one might 

compute scattering density by refining Eq. (3.5): 

( )∑
= 



















+=

N

i

i
iyx p

p
NL 1

2

0

22 �
2

1� θθλ  (3.8) 

where  is the estimate of the momentum of the i  muon and  is a nominal 

momentum (say 3 GeV, as in the previous section).  The precision of this estimate is 

influenced by the precision of the momentum estimates.  This will be addressed in 

detail in a subsequent section. 

ip� th
0p

For the present, no knowledge of individual muon momenta will be assumed 

except that muon momentum is described by the empirically known distribution 

.  Eq. (3.8) will be used, but  will be equal to a selected constant for all 

muons.  The selection of the value for assumed momentum will be made such that the 

estimate  is unbiased: 

( )pf p p�

λ�

( )[ ] λλ =∴

=

pE

cp

��
,�

 (3.9) 

It will be shown that c can be computed as a function of moments of the distribution 

.  In the following example c was simply empirically adjusted to satisfy Eq. 

(3.9) 

( )pf p
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Passage of simulated muons through the concrete, iron, and uranium cubes of 

the previous section was simulated.  Once again muons were taken 200 at a time, and 

scattering density estimates  were calculated via Eq. (3.8) with  adjusted to satisfy 

Eq. (3.9).  The experiment was performed 5000 times to assess the variability in the 

estimates.  Results are shown in Figure 3.6.  The three materials are no longer 

distinguishable from one another with 99% confidence in this simulated one minute 

exposure, though almost distinguishable.  Increasing exposure time to 2 minutes 

predictably improves separability as shown in Figure 3.7. 

λ� p�

 
Figure 3.6 Discrimination of materials using scattering of muons with momenta 

drawn from a model of the cosmic ray spectrum; ~1 minute of exposure 
(simulated results).  Central 99% percentiles are shown. 

 
Figure 3.7 Improved discrimination of materials using 2 minutes of exposure to 

muons with momentum spread (simulated results).  Central 99% 
percentiles are shown. 
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Additional factors not considered in this simple analysis will certainly be present 

in a real implementation and will increase required exposure time.  However, these 

preliminary calculations indicate that material discrimination with minute-order 

exposure times might be reasonably expected.  Moreover, measurement of muon 

momentum would improve matters.  One particular means for momentum 

measurement will be introduced in the next subsection and examined in detail in a 

subsequent chapter. 

3.3.3 Material Discrimination with Muon Momentum Spread and Momentum 
Measurement 

The previous two subsections illustrated the importance of the cosmic ray muon 

momentum spread in the ability to segregate materials by Z.  The results of Section 

3.3.1 are not practically achievable but represent a theoretical bound.  Those results 

can be approached by making use of muon momentum measurement. 

Obtaining a precise measurement of particle momentum is expensive.  The most 

common means is to create a magnetic field through which the charged particles pass 

[15].  The charged particles will be deflected by the field to a degree inversely 

proportional to momentum, and by measuring the curvature of the tracks momentum 

can be inferred.  It is possible that such a scheme could be used for cosmic ray muon 

radiography, but some of the attractive features of the method would be sacrificed 

(e.g., freedom from a large, complex, energy expensive source).  Furthermore, a much 

less precise measurement of momentum might provide acceptable results. 
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That muon momentum influences multiple scattering suggests the possibility of 

measuring momentum via multiple scattering.  Inferring the momentum of muons 



 

produced from a linear accelerator by measuring the displacement resulting from 

scattering was investigated in [34].  A setup for making such a measurement in the 

muon radiography context was independently proposed by the LANL team in [7], 

though the first detailed analysis appears herein.   
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Figure 3.8 Illustration of muon momentum measurement via multiple scattering 

through layers of material of known thickness and composition. 

The concept is illustrated in Figure 3.8.  The upper portion of the diagram, 

labeled �object measurement area,� is the same as was shown in Figure 3.1.  Added 

below, and labeled �momentum measurement area.� are additional detectors 

sandwiching plates of predetermined material and thickness such that ( )plateradLLR ≡  

is identical and known for each plate.  For each muon that passes through the 

instrument, two measurements of scattering (one in each orthogonal plane) may be 
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made for each such plate deployed.  If M  such measurements are made in the 

momentum measurement area, RMS scattering is calculated as: 

∑
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M

j

j

M
s

1

2θ
 (3.10) 

Considering Eq. (3.2), a muon momentum estimate of the following form is proposed, 

( ) R
s

MFp p
15� ≡  (3.11) 

where  is an adjustment factor required to produce an unbiased momentum 

estimate.  Using such a momentum estimate requires another adjustment factor 

 to be introduced to ensure an unbiased scattering density estimate: 
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Expressions for these adjustment factors can be analytically derived.  That derivation 

and additional analysis of momentum measurement via scattering are discussed in 

Appendix B.  For the moment, the analysis of the previous two sections will be 

extended to the case where muon momentum is measured via two plates ( ) . 4=M

Results for 5000 simulated trials of the same 100 muon (one minute) exposure 

of the three cubes are shown in Figure 3.8.  Muons were drawn from the Blanpied 

generator.  Momentum measurement allows once again for the discrimination of the 

three cubes at 99% confidence in one minute of exposure. 
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Figure 3.9 Discrimination of materials using scattering of muons with momentum 

measured via 2 plates in the setup of Figure 3.8; ~1 minute of exposure 
(simulated results).  Central 99% percentiles are shown. 

3.4 Summary 

The purposes of this chapter were to outline the cosmic ray muon radiography 

concept, to introduce the problem context (discriminating between high, medium and 

low Z materials in minute order exposure times), and to provide supportive analysis 

indicating the likelihood of feasibility.  In so doing the relationship between MCS and 

material Z was examined, and scattering density was defined as a characteristic 

parameter which might be used to segregate material.  The effect of muon momentum 

spread was discussed, and a simple method for estimating muon momentum via MCS 

was presented.  The material in this chapter sets the stage for what is to follow: 

experimental demonstration of cosmic ray muon radiography and presentation of new 

reconstruction algorithms. 
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CHAPTER 4 
RECONSTRUCTON FRAMEWORK AND POCA ALGORITHM 

In this chapter the tomographic reconstruction problem within the cosmic ray 

muon radiography context will be examined.  In Section 4.1 the framework for 

algebraic tomographic reconstruction introduced in Section 2.5.2 will be reviewed and 

that framework will be extended for the multiple Coulomb scattering information 

source.  Discussion of a full tomographic algorithm will be postponed until Chapter 6, 

but in Section 4.2 a heuristic algorithm, the Point of Closest Approach (PoCA) 

algorithm, will be presented and demonstrated.  The PoCA algorithm was developed 

to provide a simple means of illustrating results of the experimental demonstration to 

appear in Chapter 5.  

4.1 The Tomographic Reconstruction Framework 

In Section 2.5 an overview of tomographic reconstruction was presented, where 

tomography refers to the reconstruction of an image or object from projections taken 

from many different directions.  In this section the framework for tomographic 

reconstruction using multiple Coulomb scattering (MCS) will be established.  Once 

again this discussion will be carried out from a 2D perspective for simplicity of 

presentation, and later extended to the 3D case. 
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4.1.1 Framework for the Traditional Case with a Deterministic Ray Signal 
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Figure 4.1 A 2D object possessing a continuous characteristic function (a), 
overlaying a discrete grid (b), and creating a discrete representation of 
the object characteristic function (c). 

Figure 4.1(a) illustrates an object possessing some unknown characteristic 

function  contained within an object area.  For traditional tomography the 

characteristic function  might represent the tendency to attenuate x-rays, for 

example.  A uniform grid of pixels is overlaid over the object area in Figure 4.1(b), 

and a discrete model of the object is illustrated in Figure 4.1(c).  A piecewise constant 

model of the continuous function 

( yxf , )

)( yxf ,

( )yxf ,  is adopted by assuming uniform values 

within each pixel, denoted by the values . Nfff ,...,, 21
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Figure 4.2 Sampling the object by passing interrogating rays through it. 
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In Figure 4.2 the passage of M  interrogating rays through the object area is 

illustrated.  Each ray samples the object characteristic function along the line through 

which it passes.  For example, the  ray passes through the object area, and its path 

and the value, or signal, of its sampling,  are observed.  The path of each ray is 

expressed by defining a set of weights that contain the path length of that ray through 

each of the  pixels.  The relationship between a given ray�s signal and the discrete 

model of the object characteristic function is defined by the following raysum 

expression: 

thi

is

N

∑
=

=
N

j
jiji fws

1

 (4.1) 

where  represents the path length of the i  ray through the  pixel.   ijw th thj

In Eq. (4.1), the ray signal value si is measured and the weights  are 

calculated.  In the reconstruction problem the characteristic function values  are 

unknown and estimates  are sought.  Considering all 

ijw

jf

jf� M  rays, the aggregate dataset 

in terms of function estimates may be expressed via the matrix equation: 

fWs �=  (4.2) 

Given the measured ray signal vector s  and ray paths expressed via the matrix , a 

solution for the reconstructed characteristic function vector f  may be sought.  The 

solution is limited by the adequacy of the sampling, or the rank of .  If  is of less 

than full rank (i.e., the problem is under determined) then some constraint might be 

applied to the solution process.  If the problem is over determined and noise exists in 

W

�

W W
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the measured ray signals then a least squares approach might be used.  A family of 

iterative solution techniques known as Algebraic Reconstruction Techniques (ART) 

were discussed in Section 2.5.2. 

4.1.2 Framework for the Stochastic MCS Ray Signal 

In the previous chapter the problem context for cosmic ray muon radiography 

was defined to be the segregation of low, medium and high Z materials based on the 

multiple scattering of muons passing through the material.  In Section 3.2 MCS was 

discussed in detail and the Gaussian approximation of muon scattering in material was 

presented in Eqs. (3.1,2).  The scattering density of a material was defined to be: 

rad
L Lprad

1 51
2

0








≡λ  (4.3) 

where  is a nominal muon momentum and  is material radiation length as 

described in Section 3.2.  Scattering density expresses the mean square scattering 

expected for nominal muons passing through a unit depth of a material with radiation 

length  and was shown to be a potentially effective information source for the 

segregation task.  The variance of projected scattering of nominal muons through a 

finite depth  of a material of radiation length  may be expressed as: 

0p

radL

radL

radLL

L
radLλσθ =

2  (4.4) 

As shown in Chapter 3, scattering density differs strongly between materials of 

different atomic number (Z).  In the previous section a generic material characteristic 

function  was referred to and a reconstruction of a discrete version f  was 

sought.  In this section the characteristic function will be taken to be 

( yxf , )

)

�

y(x,λ , and a 
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reconstruction of the discrete version λ�  will be sought for the purpose of 

discriminating between materials of differing Z. 

In the deterministic case of the previous section ray signals were directly related 

to the material characteristic function and ray path as expressed in Eq. (4.1).  In the 

stochastic case this relationship is different.  To illustrate the influence of scattering 

density on ray signal, consider Figure 4.3, wherein single and multiple rays 

corresponding to muons of nominal momentum  are shown passing vertically 

through a depth  of a material with scattering density 

0p

L λ .  The magnitude of the 

scattering angles shown in Figure 4.3 are greatly exaggerated for illustrative purposes. 

λλ

Msss ,...,, 21

λ

1s

λ

1s

0p 0p
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Figure 4.3 Multiple scattering produces a stochastic ray signal. 

If the signal of a single ray is taken to be its scattering angle, then that signal is 

stochastic, and represents a sample of a random variable that is normally distributed 

with variance: 

Ls λσ =2  (4.5) 

Therefore, to estimate the material characteristic function (scattering density) from ray 

signals in the stochastic case, a different formulation is necessary from that used in the 

deterministic case.  In the simple case of Figure 4.3, if M  rays pass through the 
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material along the same path, then an estimate of the scattering density may be formed 

as: 

∑
=
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M

i

is

M
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LL 1

22 1�� σ
λ  (4.6) 

This form for estimating the scattering density of a homogenous piece of 

material was used for the examples of Chapter 3.  It is important to note that 

scattering density may be estimated as the mean square of the path length 

normalized ray signals.  Of course to duplicate the problem of the previous section 

the framework must incorporate the effect of a ray passing through multiple pixels 

representing material with different values of scattering density, and this will be 

addressed below.  However, the Point of Closest Approach (PoCA) algorithm relies on 

a simplifying assumption and utilizes an estimate of the form of Eq. (4.6), as will be 

seen later. 

It is also worth noting at this point that muons of varying momenta may be dealt 

with via the normalization procedures outlined in Sections 3.3.2 and 3.3.3.  Finally, if 

rays passed through the material of Figure 4.3 not strictly vertically, but from many 

different directions such that path length was different for each ray, then Eq. (4.6) 

should be modified to: 
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where  is the path length of the i  ray through the material. iL th
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Figure 4.4 A small grid containing scattering density estimates with a single ray 

passing through. 

 
Figure 4.4 illustrates a small grid wherein scattering density varies for each of 

the  pixels, denoted by 4=N jλ  for the scattering density value assigned to the  

pixel.  A ray passes through the grid and the ray signal, , is taken to be the scattering 

angle, 

thj

s

θ , of the ray, where scattering angle is assumed very small relative to cell size, 

so a straight ray is shown.  Ray path lengths through pixels are denoted by .  The 

unobserved scatterings of the ray through each of the pixels (unobserved), are denoted 

by 

jL

jθ .  Following Eq. (4.5), the variance of the individual scattering values are: 

jjL
j

λσθ =2  (4.8) 

The ray signal may be expressed in terms of the individual pixel scattering values: 
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Since the individual pixel scattering values are each independent of one another, the 

variance of the ray signal may be written as the sum of the pixel variances: 

∑∑
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j
11

22 λσσ θ  (4.10) 

Eq. (4.10), for the stochastic signal, is of the same form as Eq. (4.1) for the 

deterministic signal.  The difference is that Eq. (4.1) expressed the relationship 

between material characteristic function and a ray signal value itself, whereas Eq. 

(4.10) expresses the relationship between material and the expected variance in a ray 

signal value.  To express, for the stochastic case, an expression for a full dataset 

analogous to Eq. (4.2), an expression relating measured ray signal values to the 

probability distribution determined by the scattering density vector and path length 

matrix is necessary.  This topic will be addressed using a maximum likelihood method 

in Chapter 6. 

The PoCA algorithm presented in the next section relies on a simplifying 

assumption to avoid the complexity of dealing with multiple different materials along 

a ray path.   

4.2 The Point of Closest Approach (PoCA) Reconstruction Algorithm 

A formalism for extending traditional tomographic methods to cosmic ray muon 

radiography using multiple scattering as an information source will be presented in 

Chapter 6.  Prior to the development of that formalism a relatively simple, heuristic 

algorithm was developed to support the proof of principle effort.  The Point of Closest 

Approach (PoCA) algorithm was developed as a joint effort of the Los Alamos 

National Laboratory development team.  Results using an early version of the 

57 



 

algorithm appeared in [2], and the central concept of the method was introduced in [7].  

A refined PoCA algorithm was developed by the author based on that work, was 

presented in [35], and is further detailed in this section. 

4.2.1 Description of the 2D PoCA Algorithm 

θθ

(a) (b)(b) (d)
L

L
0
0
0

0
0

s

0
0
0

0
0

s

(c)

 
Figure 4.5 Illustration of the PoCA algorithm (see text). 

 
The PoCA algorithm is illustrated in Fig. 4.5.  It is shown in 2D for simplicity 

of presentation, though extension to 3D is straightforward.  A muon takes a stochastic 

scattered path through the object area broken into  pixels (Figure 4.5(a)).  The 

exact path is unknown, but the entering and exiting tracks are known, and the 

scattering angle 

LxL

inout θθθ −=  may be calculated.  Then the central assumption in the 

method is made, that being that the scattering occurred due to a single scattering event.  

The estimated point of scatter is located by extrapolating the incident and scattered 

tracks (Figure 4.5(b)) to their point of closest approach (in 2D the tracks must cross, 

but in 3D they may not).  This ray tracing technique is similar to that used in a nuclear 

scattering reconstruction technique previously described in [22].  Since the scattering 

is of order ~milliradians and will be assumed geometrically insignificant relative to 
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the pixel size ( 1 cm), the path may be approximated by a straight line that 

intersects the PoCA point and bisects the angle between the entry and exit rays (Figure 

4.5(c)).  Pixels through which that line passes will be taken as candidates for having 

influenced the ray.  The information signal for the ray is simply taken to be the square 

of the ray�s scattering angle: 

≥L

2θ=s  (4.11) 

That signal is assigned to the pixel containing the point of closest approach, or simply 

the pixel containing the ray crossing point in 2D. 

As M muons pass through the object volume, the scattering density vector is 

estimated by taking the mean of the contributions from all muons to each pixel and 

dividing by pixel dimension, as illustrated in Figure 4.6, where all operations are 

carried out element by element and only elements containing signal or zero are 

included in the cell means.  This process may be seen as similar to the estimate of Eq. 

(4.6) for a single piece of material, where the PoCA process has assigned the signal of 

each ray to a single pixel.  In other words, each pixel is filled with the mean square 

scattering per unit length of muons estimated to have been influenced by that pixel.  

The steps of the 2D PoCA algorithm are outlined below, where some items such as 

computing the estimated ray path may be accomplished in a straightforward manner 

and are not detailed. 
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Figure 4.6 Illustration of how the PoCA algorithm is used to reconstruct object 

scattering density. 

2D PoCA Algorithm 

1. Establish an  grid of  sized pixels over the object area, and initialize 
 matrices S , , and .  Establish a Cartesian coordinate system with 

NxN LxL
λNxN I x  

horizontal, vertical.  Measured data is y ( )outoutoutininin yxyx θθ ,,,,,  for each of 
M rays. 

2. For    % loop over rays Mi   to1:=
2.1. ( ) ( )ioutoutoutinininoutoutoutininin yxyxyxyx θθθθ ,,,,,:,,,,, =   % Get ray data 

2.2.    % Compute ray signal ( 2: inouts θθ −= )
)2.3. ( outoutoutinininpoca yxyxpocap θθ ,,,,,:=    % Compute the index of the PoCA 

pixel. 
2.4. ( outoutoutininin yxyxraypixels )θθ ,,,,,:=rayp    % Compute the estimated list of 

pixels through which the ray passes. 
2.5. ( ) ( ) spp pocapoca += SS :    % Add ray signal to PoCA pixel: 
2.6. ( ) ( ) 1: += rayray pIpI    % Increment counter for all pixels along path: 

3. Next  i
4. For  2  to1: Nj =

4.1. ( ) ( ) ( ) Ljjj ISλ =:    % Compute scattering density estimate 
5. Next j  
 

Reflection on the single scattering assumption suggests that the PoCA method 

should work best for volumes containing small, isolated objects for which that 

assumption is most valid.  In the next section the performance of the algorithm will be 

investigated in simulated examples. 

 

60 



 

4.2.2 Simulation Platform for Testing of the 2D PoCA Algorithm 

Upper detector, muon start point

Lower detector

object
area

 
Figure 4.7 Setup for muon scattering simulation and PoCA reconstruction testing. 

The PoCA reconstruction algorithm was tested through a simple simulation.  

The setup for the simulation is illustrated in Figure 4.7.  Two �detectors� were 

implemented, each 300 cm wide and separated by 200 cm vertically.  Muons with 

nominal momentum 3 GeV were emitted from the upper detector location with 

random starting position and angle uniformly distributed over 4π±  radians from 

vertical.  This angular distribution did not accurately reproduce the cosmic ray muon 

angular spectrum, but did provide for preferentially vertical orientation.  Muon 

positions and scattered angles were recorded at the bottom detector position.  A 100 x 

100 cm object area, broken into 10 cm square cells, was centered within the detectors.  

For these tests, material was placed in the object area with each 10 cm square cell 

capable of containing a different material, where material was represented by 

assigning particular scattering density value to elements.  Material outside the object 

area was setup to contain air.  For simulation of muon passage, the entire area between 

the detectors was further broken into 0.1 cm square sub-elements.  Muons were 

tracked through these sub-elements along their path from upper to lower detectors.  
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For each horizontal layer of sub-elements, proceeding from top to bottom, the position 

of the muon at the midpoint of that sub-element layer was calculated, and the sub-

element containing that point was identified.  A random scattering angle was 

simulated, drawn from a normal distribution with zero mean and variance per Eq. 

(4.4), using the scattering density and estimated ray path-length for that sub-element.  

The track of the muon was altered by this computed scattering angle, and then the 

track was propagated to the next sub-element layer.  Simulation proceeded until the 

track reached the bottom detector.  The output of the simulation was the position and 

angle of muon tracks at the top and bottom detector locations.  The accuracy of the 

simulation was verified by using geometrically simple objects and comparing 

simulated and theoretical scattering distributions for muons taking various paths 

through the simulated setup. 

4.2.3 Numerical Tests of the 2D PoCA Algorithm 

In Section 3.3 an analysis of the segregation of material via scattering density 

was presented.  It was shown that uranium, iron, and concrete possess very different 

scattering densities from one another.  In one minute of exposure about 100 muons 

will pass through each (10 cm)3 cube of material, and if muon momentum is known, 

the blocks are easily discriminated from one another via the information carried by the 

scattered muons.  For the first example in this section the PoCA reconstruction method 

will be applied to a 2D simulation including three (10 cm)2 squares of uranium, iron, 

and concrete. 
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An illustration of the object setup is shown in Figure 4.8.  The image color 

reflects object scattering density, where the value for the uranium cube on the left is 



 

78 milliradians2/cm, the center iron cube has a value of 14, and concrete cube on the 

right has scattering density of about 2.  The remaining cells are filled with the 

scattering density of air which is about 8 x 10-4 milliradians2/cm.  For the simulation, 

6000 muons with momentum 3 GeV were emitted from the upper detector, resulting in 

about 200 muons passing through each cell in the object area (though only 100 muons 

would pass through the cubes in a typical minute, the number of muons was doubled 

to achieve the 200 measurements that were used for Section 3.3.1 calculations). 

 
Figure 4.8 Object setup for test case #1.  The image reflects object scattering 

density in milliradians2/cm. 

Results of application of the PoCA reconstruction algorithm to this test case are 

shown in Figure 4.9.  In Figure 4.9(a) the reconstructed scattering density is illustrated 

to the same scale as the object illustration in Figure 4.8.  Reconstructed scattering 

density values within the pixels containing the uranium, iron, and concrete blocks are 

about 88, 14, and 2 milliradians2/cm, respectively.  These values are within the 

confidence limits established in Section 3.3.1, and the blocks are clearly 

distinguishable from one another.  In Figure 4.9(b) the color scale for the 

reconstruction is quantized to illustrate material classification, wherein a scattering 
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density of 30 or greater is classified as high Z material, medium Z material is indicated 

by a scattering density of 305 ≤< λ , and low Z material by a scattering density of 

55. ≤< λ .   

(a) (b)

 
Figure 4.9 PoCA reconstruction of scattering density for test case #1 (a), and 

reconstructed object classification (b). 

Though each block is correctly classified, there are areas around the iron and 

particularly uranium blocks wherein air has been erroneously classified as low Z 

material.  The source of this blur lies is the localization of scattering to the point of 

closest approach (or, again, the crossing point of incoming and outgoing ray tracks in 

the 2D case).  Figure 4.10(a) illustrates the some of the ray crossing locations 

computed for the reconstruction.  Though most of these locations are within the pixels 

containing the three blocks, some of them are outside the blocks.  This is due in part to 

scattering from the background air.  However, since scattering does not occur at a 

point, but is distributed, the ray crossing point may be located outside the scattering 

material, as illustrated in Figure 4.10(b).  Since the ray crossing point must be located 

along the path of the incoming ray, and muons arrive preferentially vertically, the blur 

will appear predominantly in the vertical direction.  The effect is modest for this first 
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test case, and if the objective were to identify and locate high and medium Z objects 

within low Z surroundings, then this result is acceptable. 

(a) (b)

 
Figure 4.10 Ray crossing locations computed for the reconstruction of test case #1 

(a), and illustration of how �erroneous� ray crossing location can occur. 

There is another problem caused by the ray crossing or point of closest approach 

localization method.  To illustrate the problem, a new test case was simulated with the 

three blocks oriented vertically instead of horizontally.  The object setup, PoCA 

reconstruction, and PoCA classification are shown in Figure 4.11.  Although the object 

reconstructed scattering densities for the objects are fairly accurate (84, 11, and 2 for 

uranium, iron, and concrete, respectively) significant blur between the objects is 

apparent, and more substantial material misclassification occurs.  This blur is partially 

explained by effect noted above, but the more significant cause has to do with the 

passing of rays through multiple objects. 
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(a) (b) (c)(a) (b) (c)

 
Figure 4.11 Test case #2 object setup (a), PoCA reconstruction (b), and PoCA 

classification (c). 

If a ray passes through two separate pieces of identical material and scattering 

occurs in each piece, then the ray crossing point will tend to lie between the two 

objects.  In Figure 4.12(a) the ray crossing locations for the test case #2 simulation are 

shown.  The presence of ray crossing locations between the upper two blocks, in 

particular, is notable.  Figure 4.12(b) illustrates the mechanism for erroneous 

localization of scattering.  This effect was first pointed out by a LANL colleague [36]. 

(a) (b)

 
Figure 4.12 Ray crossing locations computed for the reconstruction of test case #2 

(a), and illustration of mechanism for erroneous scattering localization. 

66 



 

A final problem with the PoCA method occurs for scenes with single objects 

sized much larger than the reconstruction cell size.  For a ray passing through a 

segment of material, the mean location of the ray crossing point is the midpoint of the 

ray segment within the material.  Therefore ray crossing points tend to clump towards 

the center of a large piece of material.  Results for test case #3 are shown in Figure 

4.13, wherein a single large block of iron was simulated.  Cells near the center of the 

block were erroneously classified as high Z due to the clumping effect. 

(a) (b)

(c) (d)

 
Figure 4.13 Test case #3 object setup (a), PoCA reconstruction (b), PoCA 

classification (c), and ray crossing locations (d). 

4.2.4 Extending the PoCA algorithm to 3D 

Extension of the 2D PoCA algorithm to 3D may accomplished in a 

straightforward manner.  Reconstruction pixels become voxels, and an  voxel NxNxN
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reconstruction volume is established.  As discussed in Section 3.2 and illustrated in 

Figure 3.2, two independent, identically distributed measurements of scattering angle 

may be made for each ray by measuring scattering into two orthogonal planes ( xz  and 

, if  is the vertical dimension).  The ray signal is therefore defined as: yz z

s =

y,,
i

( ) ([ 22

2
1

yinoutxinout θθθθ −+−  (4.12) ) ]

Scattering localization is performed as in the 2D method, but the previous ray 

crossings now truly become points of closest approach, since two rays in 3D need not 

cross.  The ray signal is assigned to the PoCA voxel and zeros to other voxels along 

the ray path.  Estimated scattering density is computed as the mean signal assigned to 

each voxel.  The 3D algorithm is detailed below. 

3D PoCA Algorithm 

1. Establish an  grid of  sized voxels over the object volume, and 
initialize  matrices , , and .  Establish a Cartesian coordinate system 
in three dimensions with 

NxNxN
NxNxN

LxLxL
IS λ

z  vertical.  Measured data is ( )
inyxzyx θθ ,,,,  and 

( )
outyxzx θθ ,, for each of M  rays. 

2. For    % loop ove  rays M  to1:= r
2.1. ( )( ) ( )( )

iinyxinyx zyxzyx θθθθ ,,,,:,,,, =    % Get ray data 

2.2. ( )( ) ( )( )
ioutyxoutyx zyxzyx θθθθ ,,,,:,,,, =    % Get ray data 

2.3. ( ) ( )( ) 2: 22
yinoutxinouts θθθθ −+−=      % Compute ray signal 

(2.4. ( ) ( ) )
outyxinyxpoca zyxzyxdpocav θθθθ ,,,,,,,,,3:=    % Compute the index 

of the PoCA voxel. 
2.5. ( ) ( )( )

outyxinyx zyxzyxdraypixels θθθθ ,,,,,,,,,3:=rayv    % Compute the 
estimated list of voxels through which the ray passes. 

2.6. ( ) ( ) svv pocapoca += SS :    % Add ray signal to PoCA voxel: 
2.7. ( ) ( ) 1: += rayray vIvI    % Increment counter for all voxels along path: 

3. Next  i
4. For  3  to1: Nj =

4.1. ( ) ( ) ( ) Ljjj ISλ =:    % Compute scattering density estimate 
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5. Next j  
 

To test the 3D version of the PoCA algorithm the simulation described in 

Section 4.2.2 was expanded.  The setup shown in Figure 4.7 was converted to 3D by 

adding a third dimension coming �out of the page.�  In the Cartesian coordinate 

system the vertical coordinate will be defined as , increasing downward.  An object 

volume sized at (100 cm)

z

3 was implemented, broken into (10 cm)3 voxels.  

�Detectors� sized at (300 cm)2 were placed above and below the object volume (in z).  

Muons with nominal momentum 3 GeV were emitted from the upper detector location 

with random starting position uniformly covering the top detector area.  Muon starting 

angles in the xz  and yz  planes were chosen to be uniformly distributed over 4π±  

radians.  Rays were propagated through the 3D volume by breaking the (10 cm)3 

elements into (.1 cm)3 sub-elements and simulating ray scattering within each sub-

element in a manner similar to that used for  the 2D simulation.  Given this geometry, 

100,000 simulated muons were required to achieve about 100 muons traversing each 

(10 cm)3 element in the object volume. 

As a numerical test of the 3D algorithm, three (10 cm)3 cubes of material were 

placed with the object volume.  A uranium cube was placed at xyz position (45,45,45), 

an iron cube at position (75,15,75), and a concrete cube at position (15,75,15).  Object 

locations, points of closest approach and a PoCA reconstruction are shown in Figure 

4.14.  The points of closest approach are concentrated at the object locations (the plane 

of PoCA locations outside the objects are due to rays which did not pass through any 

objects).  The voxels containing the uranium, iron and concrete objects, with true 
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scattering densities of 78, 14, and 2, respectively, had reconstructed scattering 

densities of 82, 16, and 3, respectively.  The signal from the uranium block was 

slightly distributed to surrounding voxels, causing them to be classified as low-Z 

although they contained only air.  The same effect was noted in 2D test case #1 and 

the cause was discussed.  This example confirms the ability of the PoCA algorithm to 

locate objects in three dimensions and to identify the Z-classification of those objects 

via reconstructed scattering density, though some blurring of object boundaries occurs.   

(a) (b)

(c)

 
Figure 4.14 3D Test case #4 object classification (a), points of closest approach (b), 

and PoCA classification (c).  Red (darkest) shading signifies high-Z 
material, blue (medium) shading medium-Z, and green (lightest) 
shading low-Z. 

Of course in test case #4 there was little obstruction of any the objects by other 

objects.  To show that object obstruction in 3D causes the same problems as were 
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apparent in the 2D case, the next test case involved significant object obstruction.  3D 

test case #5 is illustrated in Figure 4.15(a), wherein the single blocks of uranium, iron, 

and concrete were replace with 40 x 40 x 10 cm plates separated by 20 cm vertically.  

The PoCA points for many rays lie between the objects, as seen in Figure 4.15(b), and 

significant vertical blurring can be seen in the reconstruction in Figure 4.15(c).  

Elements between plates were misclassified as low, medium and even high-Z material, 

though the plates themselves were accurately classified. 

(a) (b)(a) (b)

(c)(c)

 
Figure 4.15 3D Test case #5 object classification (a), points of closest approach (b), 

and PoCA classification (c). 

 
4.2.5 Summary of PoCA Results 

In summary, the simulated results of the previous sections illustrate the facility 

of the PoCA algorithm in reconstructing the location and scattering density of small 
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isolated objects that are largely unobstructed by other objects.  Reconstruction artifacts 

may be expected when object obstruction exists, where obstruction in the vertical 

direction is most problematic due to the nature of the cosmic ray flux.  Inaccuracies 

are also seen for objects larger than the reconstruction cell size.  These effects limit the 

application of the PoCA algorithm to scenarios wherein the point scattering 

assumption is most valid. 

However, it is reiterated that the PoCA algorithm was developed as a simple 

method for reconstruction experimental data for proof of principle of the muon 

radiography concept in general.  Results using the algorithm for this purpose will be 

discussed in the next chapter.  It will also be seen in Chapter 6 that the PoCA 

algorithm provides a reasonable starting point for more advanced iterative 

reconstruction techniques. 
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CHAPTER 5 
EXPERIMENTAL PROOF OF PRINCIPLE 

The physics underlying cosmic ray muon radiography are well understood.  The 

formation of cosmic ray muons in the atmosphere is based on well documented 

physics interactions [8].  Technology for the detection of muons has been available 

since the 1940�s [37].  The cosmic ray muon flux at the Earth�s surface has been 

measured by many researchers ([9-13], for example).  In Chapter 3 the foundation for 

discriminating between high, medium and low Z objects by measuring the multiple 

scattering of muons passing through those objects was laid.  Chapter 4 presented the 

Point of Closest Approach reconstruction algorithm, and suggested via simulated 

examples the feasibility of reconstructing both the position and scattering density of 

objects via cosmic ray muon radiography.  Given this background it may be argued 

that cosmic ray muon radiography is quite likely to �work� for the material 

segregation task suggested herein. 

However, it can also be argued that nothing is proven until it is proven 

experimentally5.  Hence, an experimental proof of principle was viewed as essential to 

this effort.  The topic of this chapter is the documentation of construction of a small 

prototype cosmic ray muon radiography prototype, and presentation of results that 

support the foundation established in Chapters 1-4.  Very little funding was available 

                                                 
5 One of the author�s mentors once said, �You can show anything with computer 
generated cartoons.� 
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for this effort, so the prototype was of small size and minimal functionality (for 

example, no momentum measurement was implemented).  Almost all the components 

for the experiment were legacy equipment left over from previous experiments at Los 

Alamos National Laboratory. 

5.1 Design of the Experimental Prototype 

In Section 3.1 the general concept for cosmic ray muon radiography was 

presented, as illustrated in Figure 3.1.  The minimal setup involves four horizontally 

oriented detectors, two located above an object volume to establish incoming muon 

tracks, and two located below to measure outgoing muon tracks.  As discussed in 

Section 3.3.3, additional detectors, coupled with plates of material of known thickness, 

could be used to measure muon momentum and reduce exposure time required for 

material segregation.  This feature was not implemented in the prototype due to the 

unavailability of a sufficient number of detectors.  The discussion of Section 3.3.2 

suggests that material segregation in the absence of muon momentum knowledge is 

still feasible, it will simply take longer. 
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Recent work by the PIBETA collaboration at the Paul Scherrer Institute [20] 

provided a model for the prototype presented herein.  The PIBETA team used cosmic 

ray muons to perform quality control on cesium iodide crystals by tracking muons 

through the crystals and measuring energy deposition.  Though their objectives were 

quite different from those of this dissertation, their experimental setup was similar to 

that required herein.  Moreover, the PIBETA calorimetry device utilized muon 

detectors taken from an old spectrometer decommissioned from the Los Alamos 

Neutron Science Center (LANSCE), and almost identical detectors were available 



 

from the same source for the muon radiography prototype.  Indeed, the entire 

prototype was built using legacy equipment available from previous experiments at 

LANSCE. 

Three major system components were required for the experimental prototype: 

• Muon detectors (4x4) 
• Front end electronics to capture detector signals. 
• Data acquisition 
 
Each of these components will be discussed in turn below. 

5.1.1 Muon Detectors 

Many different types of detectors can be used to detect charged particles such as 

muons [37].  Due to their availability, simplicity of readout and history of reliable 

performance, delay line readout multiple wire drift chambers were selected. 

Wire chambers were pioneered by Charpak [38] in the late 1960�s, and continue 

to be used in many applications today [37].  A cross section through a generic wire 

chamber is shown in Figure 5.1.  Anode wires are stretched between two cathode 

plates and a voltage of a few kV is applied.  The resultant field lines are shown.  When 

an ionizing particle passes through the chamber ion pairs are created.  The electrons 

produced drift toward the anode wires.  As the electrons get very near the wires and 

the field strength increases, they are accelerated with sufficient energy to create 

additional ion pairs and an avalanche results (particularly when the chamber is filled 

with a counter gas mixture designed to promote ionization).  The avalanche of 

electrons produces a negative pulse on the anode wire.  In some wire chambers each 

anode wire is connected to an amplifier and pulse shaper.  In its most primitive form 
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such a chamber can measure particle position to the spacing of the anode wires.  By 

adding a fast triggering, but non position sensitive detector such as a scintillator and 

measuring the time between the scintillator signal and the wire chamber pulse, the 

distance between the particle and the wire can be inferred, improving position 

resolution.  The careful reader might note that when a particle produces a signal on a 

wire, it is ambiguous which side of the wire the particle was on.  This problem can be 

overcome by interspersing cathode wires between each anode wire and detecting the 

induced positive pulses on cathode wires to resolve the side to side ambiguity [39].  

One may also simply stack two chambers atop one another, with anode wire positions 

offset by half the anode wire spacing.  To measure particle position in two orthogonal 

coordinates a stack of chambers may be constructed with wire directions oriented in 

those orthogonal directions. 

-

+

Anode
Wires

Ionizing
Particle

Counter
Gas

- -+  
Figure 5.1 Cross-section of a generic multi-wire proportional chamber (from [37], 

used with permission). 

The particular type of wire chamber used herein was a delay line readout 

chamber, described in detail in [40].  As shown in the schematic of Figure 5.2, the 

anode wires (20 µm gold plated tungsten) for a wire plane are all connected to a PCB 
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delay line which produced a signal delay of 2.5 ns·cm-1.  Cathode wires (76 µm gold 

plated, copper clad aluminum) are connected to a common grounded bus.  When a 

pulse occurs on a particular anode wire, the pulse appears at differing times at two 

readout nodes.  The difference between these times may be used to identify the 

particular anode wire, and the sum of the times (with respect to a prompt trigger from 

a scintillator detector or equivalent) may be used to measure drift time and infer 

distance from the wires.  More details on the extraction of muon position from these 

chambers will appear in a later section.  By stacking two wire planes atop one another 

with anode wire positions offset by 4 mm the left right ambiguity may be resolved.  

The chief advantage of the delay line readout is the reduction in the number of readout 

channels required (from ~72, the number of anode wires for the chambers used herein, 

to only two).  A potential disadvantage is that only one event can be processed at a 

time.  Indeed, multiple events occurring within about a hundred nanoseconds of one 

another will be confounded with one another.  For this application, however, the event 

rate should be a few hundred Hz at most in about a square meter of detector area, so 

this limitation poses little difficulty. 
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Figure 5.2 Schematic of a delay-line readout drift chamber wire plane. 

Four wire planes were stacked, each separated by a ground plane of stretched 

6.3 µm aluminized mylar.  Two planes with staggered anode wire positions were 

placed above two more planes with orthogonal wire directions.  These planes were 

enclosed by plates fitted with 51 µm mylar windows to provide for an air tight 

assembly while minimizing the aggregate scattering density of the chamber itself.  

Photographs of an individual wire plane and a chamber assembly are shown in Figure 

5.3.  Outer chamber plates were fitted with external electrical connectors to each plane 

and gas supply and exhaust ports.  The sensitive inner area of the chambers was about 

(60 cm)2. 
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Cathode Bus

Mylar Window

 
Figure 5.3 Photographs of a time delay line wire plane (a), and a chamber 

enclosure for such planes (b). 

A gas supply system was constructed to flow a specific counter gas mixture 

through the wire chambers.  A mixture of approximately 65% argon, 35% isobutane, 

and 0.1% isopropyl alcohol was used, duplicating the mixture reported in [20].  This 

particular gas mixture was empirically identified over years of operation of the 

chambers in the LANSCE spectrometer to provide semi-optimal signal gain while 

quenching potential sparking in the chambers and providing some tolerance to 

impurities in the gas [41].  Acceptable performance was obtained using this gas 

mixture (see below) and no alterations were made to the mixture in this experiment. 

The four wire chambers were assembled into a stack as shown in Figure 5.4.  

The detectors (C1-C4) were separated by 27 cm vertically.  An object platform 

constructed of plastic (L) was supported by two steel beams (B).  Also shown is a 

tungsten block test object (W), one of the test scenes to be discussed in the results 

section.  Not shown in the figure are two plastic scintillators (prompt, non-position 

sensitive detectors) placed below the bottom chamber, directly atop one another, to 

provide a trigger for the system (see Section 5.1.2.2). 
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Figure 5.4 Schematic representation (a) and photograph (b) of detector positions 

and object area in the experimental prototype (see text for explanation 
of symbols). 

Hereafter individual detector planes will be referred to via the following 

nomenclature.  C1X1, for example, refers to the topmost plane measuring position in 

the X dimension in the topmost wire chamber, where X is the left-right dimension in 

Figure 5.4.  The bottom plane measuring muon position in the Y dimension (into and 

out of the page in Figure 5.4) in the second from bottom wire chamber would be 

referred to as C3Y2.  The scintillators will be referred to as S1 and S2.  Setup and 

calibration of the detectors will be discussed in Section 5.2.2. 

5.1.2 Front end electronics 

5.1.2.1 Wire Chamber Signal Processing 
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With 4 wire chambers, each containing 4 planes with two readout channels on 

each plane, 32 data channels were required.  Again, legacy equipment left over from 



 

previous experiments at LANSCE was used to meet this need.  A schematic of the 

components of signal processing electronics for each channel is shown in Figure 5.5.  

The signal from each end of each time delay line was fed into a preamp (Phillips 

Scientific 777 Octal Amplifier 2-50X), then to a leading edge discriminator (Ortec 934 

Quad Constant Fraction Discriminator) which converted the analog pulse to a NIM 

(Nuclear Instrumentation Module) logic pulse.  The use of a constant fraction 

discriminator (CFD) was required since the analog pulse height varied.  When a pulse 

crosses a fixed threshold voltage, the CFD triggers at the point that that analog pulse 

reaches a specified fraction of full pulse height.  This triggering method eliminates the 

timing walk that would occur with a fixed threshold discriminator.  The discriminated 

NIM signal was delayed by 300 ns in time (to delay the signal sufficiently to allow 

triggering to occur; see the next section) and then fed into a NIM-ECL logic converter 

(LeCroy Model 4616 ECL-NIM-ECL Converter), and the ECL signal was finally fed 

into a CAMAC Crate holding a Time to Digital Converter (TDC) array.  The TDC 

array consisted of LeCroy 4303 Time to FERA (Fast Encoding and Readout ADC) 

devices, LeCroy 4300 FERA 9-bit ADC�s, and a LeCroy 4302 16KB Memory Module 

which held the data from all 32 channels.  The TDC conversion was started with a 

trigger signal (see next section), and the time to arrival of all 32 channels was read, 

converted, and stored.  The entire TDC array was held within a CAMAC 3988 GPIB 

Crate Controller which was periodically queried by the PC based data acquisition 

program (see Section 5.1.3). 
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Figure 5.5 Signal flow diagram for muon detector signal processing. 

5.1.2.2 Trigger Logic 

A usable event occurs when a muon which passes through all four wire 

chambers and the scintillators which provide a prompt timing signal.  To minimize the 

complexity of the logic the trigger signal was formed from coincidence of the 

amplified and discriminated signals of both scintillators S1 and S2 (the scintillators 

tended to be noisy, and using two reduced false triggering, particularly in chamber 

efficiency testing to be described in Section 5.2.1) and a signal from any plane in the 

topmost chamber and any plane in the bottommost chamber.  The schematic of the 

trigger logic is shown in Figure 5.6.  When a pulse occurs on any chamber plane 

anode wire a corresponding pulse is induced on the cathode bus for that plane.  These 

cathode signals are much more prompt than the anode signals on the time delay lines, 

and are so more appropriate for use in the trigger.  All of the cathode busses for the 

four planes in C1 were commonly connected, and this �wired OR� signal was 

amplified and discriminated with an output pulse width of about 200ns.  The same was 

done for C4.  The signal from S1 was amplified, discriminated with an output pulse 

width of about 200 ns, and then delayed by 64ns to ensure that the S1 signal arrived 

after the start of both chamber pulses.  The S2 signal was amplified, discriminated 

with a narrow 20 ns output pulse width and then delayed by 80ns to ensure that the S2 

signal was the last of the four signals in time.  Then all four signals were fed into a 
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coincidence module which acted as an AND gate.  Hence, the S2 signal was the actual 

prompt timing signal, and the other three signals essentially enabled the trigger.  The 1 

microsecond veto of subsequent triggers was used to give the TDC array sufficient 

time to process the delayed chamber signals before another trigger was allowed. 

 
Figure 5.6 Schematic of trigger logic 

5.1.2.3 Other Components 

The electronics system for the prototype was rounded out with high voltage 

power supplies for both the wire chambers and scintillators.  Various other 

components (logic gates, counters, timers) were used for setup and debug of the 

system.  A photograph of the electronics racks showing major components is shown in 

Figure 5.7. 
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Figure 5.7 Photograph of front end electronics with major system components 

labeled. 

5.1.3 Data Acquisition / Analysis 

A PC based data acquisition program (PCDAQ) developed by Gary Hogan of 

Los Alamos National Lab was used to capture chamber time signals [42].  An earlier 

version of PCDAQ was used to gather data from the same chambers in their previous 

application in the LANSCE spectrometer, so the program was easily applied to the 

muon radiography prototype.  The PCDAQ program actually performed the dual role 

of data acquisition and data analysis, capturing the signal arrival times from the 

TDC�s, and then translating those signals into particle position at each chamber 

location.  More will be said about PCDAQ in the next section.  The final output of the 

program was a text file containing the X-Y positions of muon tracks at the Z 
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midpoints of each of the four wire chambers.  This file was stored for input to 

reconstruction software. 

5.2 Setup and Calibration 

Several months of work were required to get the prototype operational.  Much of 

this time was spent correcting subtle problems with the old wire chambers and in 

resolving signal integrity and timing issues with the electronics.  It is not pertinent to 

dwell on the details of the debugging effort, but highlights of setup and calibration will 

be described in this section. 

5.2.1 Wire Chamber HV Plateau and Efficiency Tests 

The first step was to identify the proper operating voltage for the wire chambers.  

Below a certain plateau voltage, the signal obtained from a muon is roughly 

proportional to its energy (though not so reliably as to be useful for energy 

measurement).  So as the voltage is reduced from the plateau voltage the level of 

energy of detectable muons also decreases.  Above the plateau voltage the avalanche 

process within the chamber is at saturation, so signal is largely independent of muon 

energy.  As voltage is raised much above the plateau voltage sparking can occur 

within the chamber.  Power supply current limits prevent damage to the chamber when 

such sparking occurs, but the power supply trips and data taking is interrupted.  The 

optimal chamber voltage is just above, but not too far above, the plateau voltage. 

The plateau voltage can be identified by efficiency testing.  To run a chamber 

efficiency curve, the scintillator pair was placed directly atop a wire chamber to be 

tested.  A denominator signal was defined as the coincidence of signals from both 
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scintillators, and a numerator signal was defined as the coincidence of signals from 

both scintillators and the wire chamber: 

%100
21

21% ×
•
••

=
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CSSEff  (5.1) 

A sample efficiency curve is shown in Figure 5.8, showing about 99% efficiency for a 

high voltage setting of 2075 V or greater.  A high voltage setting of 2100 V was 

established for all wire planes, and measured efficiencies ranged from 96% to 99.8%. 
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Figure 5.8 Sample Chamber Efficiency Curve 

5.2.2 Calibration 

To extract a muon position from the arrival time of signal from the two ends a 

wire plane delay line (call them T  and T ) three things must be determined.  Upon 

which wire did the signal appear?  This is a function of the difference in times, 

a b
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ba TT − .  How far away was the track from the wire?  This is a function of the sum of 

times, T .  Finally, on which side of the signaling wire was the particle?  This 

identification is made by making use of the information from other wire planes.  These 

relationships between times and positions are identified in the calibration process.  

Additionally, although chambers were physically leveled and aligned with one another 

in the mounting rack, there was no means for precise alignment of each wire plane.  

Fortunately PCDAQ provides �trim� parameters that allow for software alignment of 

wire planes.   

ba T+

a

Once plateau and efficiency testing had been completed for all 16 wire planes a 

calibration run was made before installation of the object platform.  About 500,000 

triggers were collected and these muons provided the dataset for calibration of the 

prototype.  Due to his prior experience and familiarity with PCDAQ, Gary Hogan 

performed most of the calibration work with only minor assistance from the author.  

Highlights will be outlined below. 

It is easy to see from Figure 5.2 why wire position is closely related to the time 

difference T .  A histogram of muon frequency plotted against time difference for 

a single wire plane for a portion of the calibration run is shown in Figure 5.9.  Each 

peak in the histogram represents a single anode wire.  With ideal signal processing 

these peaks would be impulses, but signal dispersion broadens the peaks somewhat.  A 

built in routine in PCDAQ locates the time difference corresponding to each peak and 

establishes time difference bins or windows that represent each wire location.  This 

was done for each wire plane. 

bT−
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Figure 5.9 Typical histogram of muon frequency vs. time delay line signal time 

difference. 

To establish the distance from a muon track to an anode wire, the relationship 

between drift time and drift distance must be established.  In order to obtain this 

relationship a procedure described by Breskin [43] was used.  The drift time is 

propbas TTTt ++=  (5.2) 

where T  is the common time required to propagate signals to the DAQ.  Next 

assume that, on average, drift cells are uniformly populated with muons over the drift 

space .  In other words the distribution of particles in drift space is constant: 

prop

s

c
ds
dN

=  (5.3) 

The distribution of particles in drift time may be expressed in the following expansion: 

sss dt
dsc

dt
ds

ds
dN

dt
dN

==  (5.4) 

So 
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is an equation expressing the relationship between drift distance and drift time. 

A typical histogram of muon frequency vs. the sum of time delay line signals 

appears in Figure 5.10.  A lookup table of drift distances versus drift times was 

generated by numerically integrating this histogram and using Eq. (5.5).  Of course 

this procedure relies on the longest measured drift time corresponding to the longest 

possible drift distance.  Close examination of Figure 5.10 reveals a long tail on the 

right side of the distribution, corresponding to a few events with impractically long 

drift times / distances.  Some data reduction and empirical fine tuning of the drift time 

inversion was performed by Gary Hogan during the calibration process. 

Finally, the left / right ambiguity in track position was addressed by taking the 

information from all wire planes (above or below the object area) and choosing the 

combination of left/right decision which provided the lowest RMS error in fitting a 

straight line to resultant positions.  This process was also used to fine tune the drift 

time inversion and wire position parameters. 
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Figure 5.10 Typical histogram of muon frequency versus time delay line signal 

time sum. 

As mentioned above, numerous other minor calibrations were required, 

including establishing  position of all wire planes and chambers relative to one 

another, correction for rotations of chambers relative to one another, etc.   

( zyx ,, )

5.2.3 Chamber Resolution Estimation 

The resolution of each wire plane was estimated by fitting a straight line to 

positions determined by all other planes, leaving out the plane to be analyzed, and 

comparing the position of that line projected to the plane location to the position 

indicated by the plane itself.  Via this process an average position resolution of about 

220 µm RMS for a single wire plane was obtained.  Since the average of two wire 

planes are used to express position for each wire chamber  location, a position 

resolution of about 

z

1602/220 ≅  µm RMS is expected.  With a 27 cm chamber 

spacing, this position resolution should translate into ( ) 8.027/20160tan ≅− .1  
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milliradians resolution on incoming and exiting muon angle, or ≅28.0 1.1 

milliradian RMS resolution on individual muon scattering angle. 

5.2.4 Trigger Rate 

The (30 cm)2 = 900 cm2 scintillator area was the limiting factor in the system, 

and using the nominal muon flux rate of 10,000 muons·m-2·min-1, the muon rate 

through the scintillators should be around 900 muons per minute at sea level, and as 

much as 40% higher, or 1260 muons per minute, at the Los Alamos altitude of about 

2100 meters [13] .  The system trigger, as described in Section 5.1.2.2, demanded 

coincidence between the top and bottommost wire chambers and the scintillators, 

reducing the acceptance angle of the instrument to a degree dependant on the 

placement of the scintillators.  With the scintillator pair placed in the object area the 

measured trigger rate was about 750 counts per minute.  With the scintillators placed 

about 140 cm below the topmost wire chamber the count rate was about 200 counts 

per minute, illustrating the dramatic effect of solid acceptance angle on the trigger 

rate.  The later position was used for the radiography of the test objects detailed below. 

5.3 Experimental Radiography Results 

Results for three test objects will be presented in this section.  Results from the 

first test object, a tungsten cylinder, were analyzed to confirm expectation from 

theory.  Because of the complexities of the geometry of the prototype, validation of 

the results purely against theory was difficult.  Instead, a computerized simulation of 

the system was developed by Konstantin Borozdin, one of the author�s LANL 

colleagues.  The geometry of the detectors and object platform in the prototype and the 
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size and composition of the test object were reproduced in the simulation.  The cosmic 

ray muon momentum and angular flux were reproduced by use of the Blanpied muon 

generator [14].  The passage of these muons was tracked through the system with 

multiple Coulomb scattering simulated as muons passed through simulated material.  

The output of the simulation was muon position at the  midpoint of each of the four 

detector locations.  For analysis, those positions were �blurred� by adding a Gaussian 

random variable with zero mean and a standard deviation of 0.016 cm, reproducing the 

measured position resolution of the experimental unit (see Section 5.2.3).  The 

experiment and the simulation were �cross validated� against one another.  More 

details on the simulation are presented in publications by the collaboration [2, 7, 35, 

44].  The validation and reconstruction results presented in the subsequent sections are 

the work of the author. 

z

5.3.1 Tungsten Cylinder Test Object 

5.3.1.1 Scattering Analysis and Simulation Cross-Validation 

The first test object to be radiographed was a tungsten cylinder, 11 cm in 

diameter and 5.7 cm in height.  This object appears in the schematic and photograph of 

Figure 5.4.  Tungsten has a radiation length  of about .35 cm, about the same as 

that of uranium (.32 cm).  The object was placed in the prototype and data from about 

100,000 triggers was gathered.  Some reduction was applied to this dataset.  Events 

with scattering angle of greater than 250 milliradians were discarded.  Events wherein 

the distance of closest approach between incoming and outgoing rays was greater than 

5 cm were discarded.  Both of these cuts correspond to physically improbable events, 

radL
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potentially caused by near simultaneous muons, very low energy cosmic ray electrons, 

or electrons released from objects via the passage of muons.  In any event, these two 

cuts removed only a fraction of a percent of the data. 

In the first attempt to visualize results, another angle cut was applied.  Rays with 

less than 10 milliradians of scattering (in space) were discarded, and the incoming 

tracks of the remaining rays were projected to the  location of the midpoint of the 

tungsten cylinder.  Then a histogram was made of the 

z

yx −  locations of these rays.  

One would expect a predominance of the highly scattered rays to pass through the 

tungsten object.  An image of the histogram, with (1 cm)2 position bins, appears in 

Figure 5.11.  The tungsten cylinder is clearly visible.  The beams that support the 

plastic object platform may also be seen.  This hazy image was the first experimental 

confirmation that multiple scattering muon radiography worked and was the source of 

a great deal of excitement. 
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Figure 5.11 First image of experimental radiography of tungsten block test object 

(see text). 

The intensity of Figure 5.11 does not directly represent object scattering density, 

only the density of rays which scattered more than 10 milliradians.  As mentioned 

above, to validate the actual scattering distributions through the object and the 

background the Borozdin simulation was used.  A simulated run of 100,000 muons 

was made.  At the projected plane at the center of the tungsten cylinder three regions 

were defined, as illustrated in Figure 5.12:  T) a region representing rays passing 

through the tungsten, S) an thin strip representing rays passing through the left steel 

beam, and B) an region representing background scattering.  Rays passing through 

each of these regions in both experimental and simulated runs were tagged. 
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Figure 5.12 Regions defining T) tungsten, S) steel beam, and B) background 

scattering for analysis 

Histograms of scattering into x  and  planes (combined) for rays passing 

through each region for the experiment and simulation are shown in Figure 5.13.  The 

distributions from experiment and simulation are qualitatively quite similar for all 

three regions.  The experimental distributions show somewhat heavier tails, 

particularly in the background distribution.  This may be due to the presence of lower 

momenta muons than were generated by the Blanpied generator, which does not 

generate muons with momenta lower than 300 MeV.  As has been previously 

discussed, the true multiple scattering distribution is expected to have heavier tails 

than a Gaussian distribution, but not to the extent seen in this data.  The cause and 

effect of these tails is an item of future research.  For the purposes of this document 

these results were taken as successful cross-validation of experimental and simulated 

methods. 

y
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Figure 5.13 Ray scattering distributions for rays passing through region T (a), 

region S (b), and region B (c). 

5.3.1.2 PoCA Reconstruction 

In Chapter 4 the Point of Closest Approach (PoCA) reconstruction method was 

presented.  The discussion and simulated examples of Chapter 4 were made assuming 

voxel sizes of (10 cm)3 and one minute exposure resulting in about 100 muons passing 

through each voxel.  Knowledge of muon momentum was also assumed.  These 

factors allowed for the segregation of high, medium, and low Z materials from one 

another.  For the experiment and object described in this chapter a smaller voxel size 

is required to resolve any detail in the objects.  A voxel size of (1 cm)3 was used for 

reconstruction of the tungsten cylinder data for an object volume with ( )zyx ,,  
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dimensions of 60 x 60 x 30 cm.  Even 100,000 muons results in less than 30 muons 

passing through each voxel6.  With such sparse sampling and no knowledge of 

momentum the quantified radiography of Chapter 4 is not possible.  Nonetheless, it 

will be shown that reconstruction showing the structure of objects and their relative 

scattering densities is possible. 

The 3D PoCA algorithm described in Section 4.2.4 was applied to the 

experimental dataset.  Since muon momentum varied but was not known, step 2.3 of 

the algorithm, the calculation of the signal from each ray, was modified per the 

discussion in Section 3.3.2.  The signal was calculated as 

( )
2

0

22 �
2
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ps yx θθ  (3.7) 

where xθ  and yθ  are the plane scattering angles of the ray and  is the nominal 

muon momentum of 3000 MeV.  The muon momentum estimate  was set to the 

constant value of 1427 MeV determined in the Section 3.3.2 analysis to provide 

unbiased scattering density estimates using the Blanpied muon generator. 

0p

p�

Due to the large number of voxels a different method of visualizing results was 

used.  Whereas in Chapter 4 voxels were colored according to the level of 

reconstructed scattering density, this method of visualization is too cluttered with a 

large number of voxels.  Instead, 3D isosurfaces were drawn about volumes 

containing groups of voxels at various scattering density levels.  Using the scattering 

                                                 
6 This experiment was actually performed before the analyses of Chapters 3 and 4 
were complete to the extent that the effect of number of particles on material 
segregation was known. 
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density levels defined in Chapter 4, volumes with a scattering density of 30 or greater 

were classified as high Z material, medium Z material was indicated by a scattering 

density of 305 ≤< λ , and low Z material by a scattering density of . 55 ≤< λ .  A 

three dimensional perspective view of isosurfaces for the PoCA reconstruction are 

shown in Figure 5.14.  

The shape of the tungsten cylinder and steel supporting beams are remarkably 

well reconstructed.  At first glance it might appear that object classification was also 

fairly accurate.  However, the steel beams were of I-beam construction with only a 3 

mm wall thickness, whereas they appear as large medium Z beams with hints of high 

Z material in the center in the reconstruction.  There is also a haze of low-Z material 

appearing between the beams, around the tungsten cylinder.  However, with such 

sparse sampling and no momentum knowledge these results were quite encouraging. 

A reconstruction of the simulated radiography of the tungsten cylinder appears 

in Figure 5.15.  Results are similar to that of the experiment, though less noisy and 

with more accurate reconstruction of beam composition.  The similarity in distribution 

widths in Figure 5.13 would suggest that the greater noise level in the experimental 

reconstruction is caused by the heavy tails.  Again, this is a item for future research. 
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Figure 5.14 PoCA reconstruction of the tungsten cylinder (experimental data).  Red 

(darkest) areas indicate high Z material, blue (medium shading) 
indicates medium Z material, and green (lightest shading) low Z 
material. 

 
Figure 5.15 PoCA reconstruction of the tungsten cylinder (simulation). 
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5.3.1.2 PoCA Reconstruction Optimized for Visual Appearance 

Purely for demonstration purposes, some heuristic fine tuning of the PoCA 

algorithm and visualization procedure was performed.  To highlight the structure of 

the higher Z objects and remove background haze an angle cut was applied where only 

rays scattering to more than 5 milliradians (in space) were processed.  A smoothing 

process developed by Bill Priedhorsky, a LANL colleague of the author�s, was applied 

[7].  This smoothing process spread each ray signal over voxels according to the 

uncertainty in calculating the point of closest approach given the detector position 

resolution.  The data was visualized using 11 isosurfaces with color value decreasing 

and transparency increasing with decreasing isosurface level.  Application of these 

heuristics prohibits any sort of quantified radiography, but produced visually 

impressive reconstructions.  Reconstructions so enhanced for aesthetic appearance are 

shown Figure 5.16. 

 
Figure 5.16 PoCA Reconstructions of tungsten cylinder; experiment (a) and 

simulation (b), with heuristic modification to improve appearance (see 
text). 

5.3.2 Additional Test Objects 

Experimental radiographs were produced of two more test objects.  The first was 

a small steel c-clamp, and the second was the letters �LANL� built from 1 inch square 
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lead stock.  To reproduce the fine detail in these objects, the voxel size was reduced to 

(0.5 cm)3.  Once again, data from 100,000 muons was gathered.  No attempt was made 

at quantified radiography or simulation of these small objects.  A reconstruction (with 

heuristic enhancements) and photograph of the c-clamp object appears in Figure 5.17.  

The accuracy of the object detail in the reconstruction is remarkable.  The intensity 

levels in this radiography are only relative, not absolute as in Figures 5.14 and 5.15.  

Hence, the c-clamp and steel beams, which are of similar composition and thickness, 

have similar intensity in the image. 

 
Figure 5.17 Aesthetically enhanced PoCA reconstruction of a c-clamp, made from 

100,000 experimentally gathered muons. 

A reconstruction of the LANL test object is shown in Figure 5.18.  Once again, 

the detail in this heuristically enhanced reconstruction is impressive.  Because the 
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letters are made of high-Z material they show up with relatively greater intensity than 

the thin medium Z beams in the image. 

 
Figure 5.18 Aesthetically enhanced PoCA reconstruction of the letters �LANL� 

constructed of 1� lead stock, made from 100,000 experimentally 
gathered muons. 

5.4 Summary 

The primary objective of the experimental prototype was to prove the basic 

validity of the cosmic ray muon radiography concept.  As has been stated, limited 

funding was available for this effort, so some concepts, such as muon momentum 

measurement by multiple scattering, were not implemented.  The lack of momentum 

knowledge, coupled with the small size of the detectors, prohibits validation of the 

�one-minute material discrimination� referred to in previous chapters.  However, these 

experimental results do serve to prove that the basic concept is valid, that the multiple 
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scattering of cosmic ray muons is a viable information source for radiography, and 

that the PoCA reconstruction method works for identifying the location, structure, and 

relative Z-level of objects. 
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CHAPTER 6 
MAXIMUM LIKELIHOOD RECONSTRUCTION  

In Chapters 2 and 4 the framework for algebraic or iterative tomographic 

reconstruction was examined.  It was shown that direct application of these methods is 

not possible due to the inherently stochastic nature of the multiple scattering 

information source.  However, by marrying the algebraic framework with a statistical 

model of the information source and applying maximum likelihood methods, a fully 

tomographic reconstruction algorithm for cosmic ray muon multiple scattering 

radiography was developed.  That development and results from the algorithms are 

presented in this chapter. 

6.1 Maximum Likelihood Tomographic Reconstruction using Scattering Angle 
Information 

In this section a tomographic algorithm using ray scattering as an information 

source will be developed, based on the method of maximum likelihood.  This 

algorithm will be termed the MLS (Maximum Likelihood Scattering) algorithm. 

6.1.1 The MLS Reconstruction Framework 

In Section 4.1.1 a framework for discrete tomographic reconstruction for 

deterministic ray signals was presented.  This concluded with a system of linear 

equations: 

fWs �=  (6.1) 
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where f�  is a vector of estimates of a discrete version of an object characteristic 

function,  is a matrix of weights that describe the estimated path of rays through an 

object area, and  is a vector containing measured signal values of the rays.  In 

Section 4.1.2 a framework for tomographic reconstruction for the stochastic multiple 

Coulomb scattering (MCS) signal was started.  It was shown that, for a given ray  

with nominal momentum: 
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where the ray signal  is the scattering angle of ray,  is the estimated path length 

of the ray within the  of  cells, and 

is

thj

ijL

N jλ  is the scattering density of material within 

cell j .  Scattering density was defined in Chapter 3 as the mean square scattering 

angle expected for rays passing through a unit depth of material.  Therefore Eq. (6.2) 

is an expression for the variance of the approximately normally distributed, zero mean 

ray signal .  For notational simplicity define , and Eq. (6.2) may be rewritten 

as a system of linear equations in terms of scattering density estimates: 

is 2
isiv σ=

λLv �� =  (6.3) 

where is a matrix whose  row contains the ray cell path lengths for the  ray.  

Eq. (6.3) is of similar form to Eq. (6.1), but in Eq. (6.3) the left side of the equation 

represents the variance of ray signals (for a given scattering density estimate 

L thi thi

λ� ) rather 

than the ray signals themselves.   
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which relates the ray signals to the variances of Eq. (6.3) is required.  This may be 



 

accomplished by writing the conditional probability of the signal for the i  ray in 

terms of the variance estimate: 

th

( ) 







−=

i

i

i
ii v

s
v

vsP
�2

exp
�2

1�
2

π
 (6.4) 

The higher this probability, the more congruent the scattering density estimate is with 

the signal of the i  ray.  Each ray is independent, so for the entire data set of th M  rays: 
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and the higher this probability, the greater the congruency between the scattering 

density estimate and the aggregate measured ray signals.  Using the method of 

maximum likelihood, an optimal estimate in the sense of maximizing that congruency 

might be expressed as 

( )sλλ
λ

�max arg�
�

* P=  (6.6) 

Using Bayes Law of Conditional Probability 

( ) ( )
( )s
λλs

λ
λ P

PP ��
max arg�

�

* =  (6.7) 

The probability of the given measured dataset, ( )sP , is 1.  If some prior knowledge of 

the nature of objects were assumed, that knowledge could be incorporated through 

some expression for ( )λ�P , but for now all objects will be assumed to be equally 

probable, and the optimal estimate reduces to: 

( ) ( )[ ]λvsλsλ
λλ

�max arg�max arg�
��

* PP ==  (6.8) 
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To obtain this optimal scattering density estimate, one may proceed by taking 

the log of both sides of Eq. (6.5). 
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Maximization of the log probability will result in maximization of probability.  Only 

the right term in Eq. (6.11) varies with the scattering density estimate.  Maximizing 

LP  is equivalent to minimizing this right hand term.  The optimization problem may 

thus be defined as: 
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where  denotes the  row of the path length matrix L . iL thi

For a realistic solution some constraint must be imposed on the solution of Eq. 

(6.12).  Negative values for scattering density make no physical sense, so the solution 

must have non-negative values.  In fact, it is reasonable to impose the constraint that 

the scattering strength vector contain no elements with a value less than that of the 

scattering density of air.  With this constraint the minimization problem may be 

written: 

( ) jλs
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6.1.2 The 2D MLS Reconstruction Algorithm 

Eq. (6.13) is the constrained minimization problem to be solved for stochastic 

tomographic reconstruction.  Normalizing for ray count, the cost function for a given 

scattering density estimate λ�  may be written as: 

( ) ( )∑
=
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i

is
M

F
1

2

�
�ln1�

λL
λLλ

i
i  (6.14) 

Any suitable minimization routine may be used to find a solution which 

minimizes this cost function7.  For the examples reported in this chapter the large scale 

algorithm embedded into the MATLAB constrained minimization function fmincon 

was used [45].  This algorithm is a Newton method and so makes use of the Jacobian 

(gradient) and Hessian (second derivatives) of the function to be minimized.  

Derivation of the Jacobian and Hessian matrices may be found in Appendix C.  Most 

of the work is done by the minimization algorithm, but the steps of the 2D MLS 

algorithm are outlined below. 

2D MLS Algorithm 

1. Establish an  grid of  sized pixels over the object area.  Establish a 
Cartesian coordinate system with 

NxN LxL
x  horizontal, y  vertical.  Measured data is 

( outininin xyx )outout y θθ ,,,, ,  for each of M  rays. 
2. For    % loop over rays Mi   to1:=

2.1. ( ) ( )ioutoutoutinininoutoutoutininin yxyxyxyx θθθθ ,,,,,:,,,,, =    % Get ray data 
2.2. ( ) ( )inouti θθ −=:s     % Compute ray signal 
2.3. ( ) ( )outoutoutininin yxyxDraysumi θθ ,,,,,2::, =L    % Compute the estimated 

ray path lengths through each pixel. 
3. Next  i

                                                 
7 Of course in a practical application the computational efficiency of the solution 
algorithm may be of utmost significance, but will not be investigated herein. 
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4.    % Initialize scattering density vector to the value for air (the PoCA 
solution may also be used as a starting point) 

airλ=:�
0λ

5. ( )L,λ00
�: fcstC =    % Compute initial cost, where ( )⋅fcst  is the Eq. (6.14) cost 

function 
6.    % Set cost function reduction limit (other values might be used). 9101: −= xCl

7. Do 
7.1. ( )( )airfcstfminconC λ,�:]�,[ 011 L,λλ =

0λ�
   % Compute new scattering density 

estimate, from start point  with lower bound airλ  on all elements. 
7.2.   % Compute reduction in cost function 01: CCCd −=

7.3.    % Update scattering strength estimate 10 λλ �:� =
7.4.    % Update cost function 10 : CC =

8. While    % Loop while cost function reduction is greater than limit ( ld CC > )
9.    % Save last estimate as optimal estimate 0

�:� λλ =opt

 

6.1.3 Numerical Tests of the 2D MLS Reconstruction Algorithm 

The same simulation that was described in Section 4.2.2 for testing of the PoCA 

algorithm was used to test the 2D MLS algorithm.  Test case #1 consisting of 

horizontally placed (10 cm)2 blocks of uranium, iron, and concrete was used for the 

first test case.  Starting with an object area filled with air, the MLS algorithm required 

49 iterations to find a solution.  Results are shown in Figure 6.1, with PoCA algorithm 

results included for comparison.  All three objects were correctly classified by the 

MLS algorithm with no reconstruction artifacts.  The reconstructed scattering strength 

values were 88, 14, and 2 milliradians/cm2 for the uranium, iron, and concrete blocks 

whose true values were 78, 14 and 2, respectively. 

Results for test case #2, with the three blocks oriented vertically, are shown in 

Figure 6.2.  56 iterations were required to achieve the MLS solution, with all objects 

correctly classified with no reconstruction artifacts.  The reconstructed scattering 
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density values were 89, 14, and 3 for the uranium, iron, and concrete blocks, 

respectively. 

(d) (e)

(a) (b) (c)

 
Figure 6.1 Results for test case #1.  The simulated object scattering densities (a), 

the PoCA reconstruction (b), the MLS reconstruction (c), the PoCA 
classification (d), and the MLS classification (e). 
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(a) (b) (c)

(d) (e)

 
Figure 6.2 Results for test case #2.  The simulated object scattering densities (a), 

the PoCA reconstruction (b), the MLS reconstruction (c), the PoCA 
classification (d), and the MLS classification (e). 

Clearly application of tomographic methods is beneficial in the reconstruction 

process.  This is particularly noticeable in test case #2.  Rays that pass between the 

cubes and scatter little provide information indicating that no material exists there.  

The PoCA algorithm is unable to make use of this information except to the extent that 

low signal rays bring down the mean scattering density of cells through which they 

pass.  The MLS algorithm seeks congruence between the scattering density estimate 

and the scattering of ALL rays, even those with very low scattering. 

To examine the performance of the algorithm in a more tomographically 

ambiguous situation, a new test case #6 was defined (test cases 3-5 were defined in 

Chapter 4).  For this case a central block of uranium is surrounded by a box of iron.  

This case is tomographically ambiguous since no rays pass horizontally through the 
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object � the most oblique rays are at 45 degrees from vertical.  The object setup and 

reconstruction results are shown in Figure 6.3, where the MLS reconstruction was 

achieved in 57 iterations.  The PoCA reconstruction is predictably blurred.  The MLS 

reconstruction is better, but the effect of the ambiguity is apparent.  The horizontal 

walls of the iron box are not well resolved, though the central uranium block is 

correctly classified. 

An enhancement to the MLS framework and algorithm may be made to improve 

performance for such tomographically ambiguous cases, as will be discussed in the 

next section. 

(a) (b) (c)

(d) (e)

 
Figure 6.3 Results for test case #6.  The simulated object scattering densities (a), 

the PoCA reconstruction (b), the MLS reconstruction (c), the PoCA 
classification (d), and the MLS classification (e). 
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6.2 Maximum Likelihood Tomographic Reconstruction using Scattering Angle 
and Ray Displacement Information 

An intriguing feature of the PoCA algorithm is its ability to identify the 

approximate position of an object along the path of a ray.  In traditional tomography 

no such localization is possible.  In Chapter 4 the problems that such localization can 

cause were examined, and the MLS algorithm of the previous section was shown to 

provide improved performance for some cases.  However, the calculation of the point 

of closest approach relies on the displacement of rays as well as their scattering.  The 

ray displacement information can be incorporated into the maximum likelihood 

framework.  The resultant algorithm, to be discussed in this section, will be called the 

MLSD (Maximum Likelihood Scattering and Displacement) algorithm. 

6.2.1 The 2D MLSD Reconstruction Framework 

Referring back to Figure 2.4, a charged particle passing through a material will 

experience both scattering and displacement.  As has been previously discussed, the 

scattering angle may be approximated as a normally distributed random variable with 

zero mean and variance: 

λσ θ L=∆
2  (6.15) 

The ray displacement may also be approximated as a normally distributed random 

variable with zero mean and variance [1]: 

λσσ θ 33

3
2

2
2 LL
x == ∆∆  (6.16) 

and the covariance between the ray scattering angle and displacement is: 
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λσσ θθ 22

2
2 LL

x == ∆∆  (6.17) 

Ray scattering and displacement may thus be (approximately) described as 

distributed jointly Gaussian.  In order to develop a tomographic algorithm that 

incorporates this information, expressions must be developed to describe the 

parameters of the distribution of rays passing through cells containing different 

materials. 

Figure 6.4 illustrates the passage of a ray through 3 layers of material and 

provides expressions for the aggregate scattering and displacement as a function of 

scattering and displacement in each layer. 

∆x1∆θ1

∆θ2

∆θ3

∆x2

Material 1 Material 2 Material 3

L1 L3L2

x2
x1

θ1

θ2

θ3 x3

∆x3

ii Lx <<∆ assume

( ) 32323 tan xLxx ∆+⋅+= θ

( ) 21212 tan xLxx ∆+⋅+= θ

11 xx ∆=

323 θθθ ∆+=

212 θθθ ∆+=

11 θθ ∆=

( ) ( ) 32321213 tantan xLxLxx ∆+⋅+∆+⋅+∆= θθ

( ) ( ) 321321213 tantan xLxLxx ∆+∆+∆⋅+∆+∆⋅+∆= θθθ

angles small assume

( ) ( )323213213 LLLxxxx θθ ∆++∆+∆+∆+∆=

3213 θθθθ ∆+∆+∆=

ii Lx <<∆ assume

( ) 32323 tan xLxx ∆+⋅+= θ

( ) 21212 tan xLxx ∆+⋅+= θ

11 xx ∆=

323 θθθ ∆+=

212 θθθ ∆+=

11 θθ ∆=

323 θθθ ∆+=

212 θθθ ∆+=

11 θθ ∆=

( ) ( ) 32321213 tantan xLxLxx ∆+⋅+∆+⋅+∆= θθ

( ) ( ) 321321213 tantan xLxLxx ∆+∆+∆⋅+∆+∆⋅+∆= θθθ

angles small assume

( ) ( )323213213 LLLxxxx θθ ∆++∆+∆+∆+∆=

3213 θθθθ ∆+∆+∆=

 
Figure 6.4 Calculation of ray scattering and displacement for multiple layers of 

material 

The expressions in Figure 6.4 may be generalized to  layers of material: N
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where 

0 and          ,     
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N

jk
kj TNjLT  (6.20) 

Using Eq. (6.16-18) an expression for the variance in ray displacement may be 

developed: 

( ) )()()( xExExxExV ∆⋅∆−∆⋅∆=∆  (6.21) 

But , so ( ) 0=∆xE
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Since displacement and scattering in each layer are independent of displacement and 

scattering in other layers, and ( ) ( ) 0=∆=∆ jj xEE θ , all terms vanish for . kj ≠

( ) ( ) ( ) ([ ]∑
=

∆⋅∆⋅+∆⋅∆⋅+∆⋅∆=∆
N

j
jjjjjjjj ETxETxxExV

1

22 θθθ )  (6.24) 

Substituting the terms of Eq. (6.13-15) into Eq. (6.22), 
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Eq. (6.26) is the desired result, an expression for the ray displacement variance 

in terms of layer path lengths and cell scattering densities.  Proceeding in a similar 

fashion to develop an expression for the covariance term: 
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 (6.27) 
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Again all terms vanish for . kj ≠

( ) ( ) ([∑
=

∆⋅∆⋅+∆⋅∆=∆⋅∆
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jjjjj ETxExE
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θθθθ  (6.30) 
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Eq. (6.32) expresses the covariance in terms of layer path lengths and cell 

scattering densities.  Finally, per the MLS development, 

∑
=

∆ =
N

j
jjL

1

2 λσ θ  (6.33) 
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Eqs. (6.26,32,33) express the parameters of the jointly Gaussian scattering / 

displacement distribution in terms of layer path lengths.  The form of these equations 

is unchanged if the layers become cells or pixels.  However, the T  terms will not be 

calculated according to Eq. (6.20).  Instead, each T  term is calculated to be the sum 

of cell path lengths downstream from cell 

j

j  along ray path.  For a cell grid containing 

 cells, the following weighting vectors may then be assigned for a given ray i : 2N

[ ]2...21 iNiii LLL=θW  (6.34) 

[ ]222 2...22 2
22

2
211

2
1 iNiNiNiiiiiii TLLTLLTLL +++=θxW  (6.35) 
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2
11

3
1

3
...

3
3

xW  (6.36) 

where  represents the ray path length of ray i  in cell  and T  the sum of ray i  

path lengths over cells downstream of cell  along the ray path.  The parameters of 

the jointly Gaussian scattering / displacement distributions for ray  in terms of the 

weighting vectors and scattering density estimates are then 

ijL j ij

j

i

λWθ
�� iθiv =  (6.37) 

λWθx
�� iθxis =  (6.38) 

λWx
�� ixiv =  (6.39) 

The covariance matrix of the estimated distribution is: 









=

xiθxi

θxiθi
i vs

sv
��
���Σ  (6.40) 
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The incoming and outgoing angle inθ  and outθ and position  and of each 

ray are measured.  The scattering signal is simply the difference in angles: 

inx outx

iiniouti ,, θθθ −=∆  (6.41) 

Some calculation is necessary to compute ray displacement.  First the non-scattered 

position  is calculated by projecting the incoming ray track to the bottom of the 

cell grid (detector position).  This measured position difference must be projected onto 

a line perpendicular to the mean ray path: 

iprojx ,

( ) 





 +

−=∆
2

cos,,
inout

iprojiouti xxx θθ  (6.42) 

The data vector for ray i  is defined to be: 









∆
∆

=
i

i
i x

θ
d  (6.43) 

To perform tomographic reconstruction, congruency between these measured 

values and the distribution with the covariance matrix of Eq. (6.40) is sought.  The 

method of maximum likelihood employed in the MLS algorithm may be used in this 

case as well.  The probability of the data vector d  given  is: i iΣ
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−= −

iii
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iiP dΣd
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Σd 1T �
2
1exp

�2
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21

π
 (6.44) 

Proceeding in a fashion similar to that used for the MLS algorithm, an estimate *λ�  

that maximizes probability may be written. 

( )[ ] jλ airj
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i
iiii  allfor  � such that     ��lnminarg�
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− dΣdΣλ 1T

λ

*  (6.45) 
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6.2.2 The 2D MLSD Reconstruction Algorithm 

The cost function for the minimization problem may be written as: 

( ) ( )[∑
=

−+=
M

i
iiiiM

F
1

��ln1� dΣdΣλ 1T ] (6.46) 

The MLSD algorithm is very similar to the MLS algorithm, with a few extra steps 

required to setup the data and weight matrices, as outlined below.  Derivation of the 

Jacobian and Hessian matrices is somewhat more complex, as outlined in Appendix C, 

and more computationally expensive. 

2D MLSD Algorithm 

1. Establish an  grid of  sized pixels over the object area.  Establish a 
Cartesian coordinate system with 

NxN LxL
x  horizontal, y  vertical.  Measured data is 

( outininin xyx )outout y θθ ,,,, ,  for each of M  rays. 
2. For    % loop over rays Mi   to1:=

2.1. ( ) ( )ioutoutoutinininoutoutoutininin yxyxyxyx θθθθ ,,,,,:,,,,, =    % Get ray data 
2.2. ( inout )θθθ −=:     % Compute scattering signal 
2.3. ( ) 2: outin θθθ +=    % Compute average ray angle 
2.4. ( ) ( )inoutininproj yyxx −⋅+= θtan:    % Compute projected un-deflected 

position 

2.5. ( ) ( )θcos: ⋅−= projout xxx    % Compute displacement signal 

2.6. ( ) [ xid ]θ=:,    % Establish data vector for ray 

2.7. [ ] ( )outoutoutininin yxyxDraysum θθ ,,,,,2:, =TL    % Compute the estimated 
ray path lengths through each pixel. 

2.8.   % Compute row of angle weights ( ) LWθ =::,i
2.9. ( ) [ ]222 2...22::, 2

22
2
211

2
1 NNN

TLLTLLTLLi +++=θxW  
   % Compute row of angle/displacement weights 

2.10. 
( )

[ ]22222
223

2
2

2
2
22

3
21

2
1

2
11

3
1 3...33

::,

NNNNN
LTLTLLTLTLLTLTL

i

++++++

=xW
 

   % Compute row of displacement weights 
3. Next  i
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4.    % Initialize scattering density vector to the value for air (the PoCA 
solution may also be used as a starting point) 

airλ=:�
0λ

5. ( )d,W,WW,λ θxxθ ,�: 00 fcsttxC =    % Compute initial cost, where  is the 
Eq. (6.46) cost function 

( )⋅fcsttx

6.    % Set cost function reduction limit (other values might be used). 9101: −= xCl

7. Do 
7.1. ( )[ ]airfcsttxfminconC λ,,�:]�,[ 011 d,W,WW,λλ θxxθ=

0λ�
   % Compute new 

scattering density estimate, from start point  with lower bound airλ  on all 
elements. 

7.2.   % Compute reduction in cost function 01: CCCd −=

7.3.    % Update scattering strength estimate 10 λλ �:� =
7.4.    % Update cost function 10 : CC =

8. While    % Loop while cost function reduction is greater than limit ( ld CC > )
9.    % Save last estimate as optimal estimate 0

�:� λλ =opt

 

6.2.3 Numerical Tests of the 2D MLSD Reconstruction Algorithm 

Given the good performance of the MLS algorithm on test cases #1 and #2, 

these cases should pose little difficulty for the MLSD algorithm.  Reconstructions of 

the first two test cases are shown in Figure 6.5, where no reconstruction artifacts may 

be seen for either case.  The reconstructed scattering densities for the uranium, iron, 

and concrete blocks were 76, 13, and 2 milliradians2/cm, respectively, for case #1, and 

79, 13, and 2 for case #2.  True values were 78, 14, and 2.  Computation time for these 

test cases using the MLSD algorithm was about 2.3 times that of the MLS algorithm. 
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(a) (b)

 
Figure 6.5 MLSD reconstructions of test case #1 (a), and test case #2 (b).  Images 

of the actual objects are identical (see Figures 6.1 and 6.2). 

(a) (b) (c)

(d) (e)

 
Figure 6.6 Results for test case #6.  The objects (a), the MLS reconstruction (b) 

and classification (c), the MLSD reconstruction (d) and classification 
(e). 

Results for test case #6 are shown in Figure 6.6, with MLSD and MLS results 

shown to allow comparison.  The enhanced ability of the MLSD algorithm to deal 

with the tomographic ambiguity is apparent.  Because artifacts do exist even in the 
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MLSD reconstruction, it is wise to introduce quantified performance indices, and this 

will be done shortly.   

First, however, it is instructive to more clearly illustrate the value of 

incorporating displacement information.  The simulation of test case #1 was repeated, 

but with all rays oriented absolutely vertical.  Intuitively, and from the Fourier Slice 

Theorem discussion of Section 2.5.1, traditional tomography would be unable to 

identify any vertical structure in such a case.  In other words, the blocks in test case #1 

would be indistinguishable from vertical columns of equivalent distributed density.  

MLS and MLSD reconstructions of test case #1 using only vertical rays appear in 

Figure 6.7.  The MLS reconstruction illustrates the ambiguity of the problem, but the 

MLSD reconstruction is indistinguishable from the actual scene.  This is a remarkable 

result, and illustrates the fundamental difference between traditional tomography and 

scattering tomography making use of ray displacement8. 

                                                 
8 Actually, the MLS reconstruction is interesting.  The slight localization of the signal 
(i.e., the reconstruction is not just vertical columns extending from top to bottom) may 
be due to a modest tomographic benefit due to scattered ray paths not remaining 
perfectly vertical. 
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(a) (b)

 
Figure 6.7 MLS (a) and MLSD (b) reconstructions of test case #1 with all 

interrogating rays oriented vertically, passing from top to bottom. 

Test case #3, introduced in Chapter 4, consisted of a large block of iron, and 

illustrated the tendency of the PoCA algorithm to lump material into the middle of 

large block spanning multiple reconstruction cells.  Results for the PoCA and MLSD 

reconstruction algorithms on test case #3 are illustrated in Figure 6.8.  The outer 

boundary of the object is better reproduced by the MLSD algorithm than with the 

PoCA algorithm, but the reconstruction and classification of the interior of the object 

is arguably no better.  However, the mechanisms producing the artifacts are different.  

In the MLSD algorithm, the artifacts can be empirically shown to be the caused by 

under sampling, while the �lumping� effect is inherent in the PoCA algorithm. 
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(a) (b) (c)

(d) (e)

 
Figure 6.8 Results for test case #3, one minute simulated exposure.  The objects 

(a), the PoCA reconstruction (b) and classification (c), the MLSD 
reconstruction (d) and classification (e). 
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1 minute 3 minute 5 minute

 
Figure 6.9 PoCA and MLSD results for test case #3 for 1, 3, and 5 minute 

simulated exposures. 

Figure 6.9 shows that MLSD performance for test case #3 improves with 

exposure time, i.e., with more rays sampling the object, but not so for the PoCA 

algorithm.  This suggests that the artifacts in the one minute MLSD reconstruction are 

related to under sampling of the object.  The values of the cost function of Eq. (6.46) 

applied to the 1 minute exposure data using the scattering density vector of the actual 
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object, the MLSD reconstruction, and the PoCA reconstruction are -12.977, -11.800, 

and -12.993, respectively.  Thus the measured ray data is almost equally probable 

given either the scattering density vector of the actual object or the MLSD 

reconstruction, though these vectors are quite different from each other.  This 

observation suggests that regularization of the MLSD solution might prove useful.  

Though regularization is outside the scope of this dissertation, investigation is 

suggested as future work. 

As a final example of the performance of the MLSD algorithm, results for test 

case #7, a scene with somewhat complex object structure, are presented. 

(a) (b) (c)

 
Figure 6.10 Test case #7 objects, the letters �PSU� made of iron (a), the one minute 

MLSD reconstruction (b) and classification (c). 

 
6.2.4 Performance Indices and Algorithm Performance 

Returning to the task of defining performance indices for the reconstructions, the 

first index will simply be the RMS difference between a reconstructed scattering 

density vector and the actual scattering density: 
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To compare classification performance, the classification of a cell is formally 

defined as: 
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and classification error is defined as the sum of absolute cell classification error: 

∑
=

−=
2

1
,,2

1 N

j
jactualjreconc CC

N
P  (6.49) 

Values for these indices are shown in Table 6.1.  In all cases, the MLSD is the 

best performing algorithm. 

Table 6.1 Performance Measurements for 2D Test Case Reconstructions 
  rmsP  cP  

Test 
Case 

Exposure 
Time PoCA MLS MLSD PoCA MLS MLSD 

1 1 1.08 0.99 0.25 0.05 0.00 0.00 
2 1 1.32 1.07 0.13 0.07 0.00 0.00 
3 1 5.56 7.88 4.56 0.28 0.32 0.11 
3 2 5.77 5.63 3.61 0.29 0.21 0.02 
3 3 4.88 4.16 2.51 0.27 0.16 0.03 
3 4 5.32 5.11 2.71 0.27 0.13 0.01 
3 5 5.28 3.69 1.76 0.27 0.11 0.00 
6 1 7.76 5.53 2.54 0.93 0.36 0.19 
7 1 4.77 4.62 1.94 0.48 0.19 0.01 
 

6.2.5 Extensions to the 2D MLSD Algorithm 

6.2.5.1 Measurement Error 

The finite resolution of the muon detectors can affect reconstruction quality.  

Muon tracks and thus bend angles are computed from position information, as are ray 

displacements, of course.  In the simulated examples presented so far in this chapter, 
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no position resolution effects were included.  The wire chambers used for the 

experiment described in Chapter 5 exhibited a resolution measured at 0.016 cm RMS.  

With 27 cm detector spacing, this position resolution produces about a 0.8 milliradian 

RMS error in measuring track angles, and a 1.1 milliradian error in computed bend 

angles.  It will be seen that such errors do produce artifacts in the baseline MLSD 

algorithm, but that these artifacts are substantially reduced if the position resolution is 

incorporated into the MLSD statistical model. 

Position error was incorporated into the MLSD statistical model as follows.  The 

RMS position error for any given measuring plane is denoted , the spacing between 

the upper detector pair (or lower detector pair) is denoted dz , and the spacing 

between inner detectors dz .  Detectors are labeled [upper, in, out, lower] from top to 

bottom.  Incoming track angle is computed as: 
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xx1tanθ  (6.50) 

Measured incoming angle, denoted with a tilde, is expressed as 
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where the e  terms are samples from the Gaussian position error distribution.  These 

terms are small, so using a small angle approximation: 
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and since the two position errors are i.i.d., the mean square error in angle measurement 

is: 

( ) 2

2
2 2~

o

p
in dz

E
VE ≅= θθ  (6.53) 

Eq. (6.53) clearly applies to both incoming and outgoing angle measurement.  

The measured bend angle of a ray is the difference between these two independent 

angle measurements, so: 

2
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dz
E

E ≅∆θ  (6.54) 

The measured displacement of a ray is computed as: 

( )iniinoutinprojout dzxxxxx θ~tan~~~~~
, +−=−=∆  (6.55) 

where, for simplicity, the correction in Step 2.5 of the MLSD algorithm is omitted in 

this analysis.  Expanding Eq. (6.55) to express measured quantities in terms actual 

quantities plus error: 
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Assuming small angles, 
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Taking the variance of the measured displacement, 
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From Eq. (6.59) the mean square displacement error may be established as: 
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To complete the derivation the covariance term must be computed: 
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Eqs. (6.54,60,64) represent the means to incorporate the effect of position 

resolution into the MLSD algorithm, accomplished by modifying Eqs. (6.37-39) to: 

2�� θ∆+= Ev iθi λWθ  (6.65) 

xiθxi Es θ∆+= λWθx
��  (6.66) 

2�� xixi Ev ∆+= λWx  (6.67) 

Figure 6.11 shows the effect of position measurement error.  In the left frame is 

the MLSD reconstruction with no position error simulated.  In the middle frame is a 

reconstruction with .016 cm RMS position error and 27 cm outer detector spacing 

simulated but unaccounted for in the reconstruction.  Significant artifacts are apparent 
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in the corners of the image.  The right frame shows the effect of accounting for the 

position error in the statistical model.  No artifacts appear in the corrected 

reconstruction. 

(a) (b) (c)

 
Figure 6.11 Effect of position measurement error.  Test case #1 MLSD 

reconstruction with no position error simulated (a), with position error 
simulated but unaccounted for in MLSD (b), and with error accounted 
for in MLSD algorithm (c). 

Eqs. (6.54) and (6.60) show that the ratio of detector spacings strongly effect 

measurement uncertainties.  For the example of Figure 6.10, the inner detector spacing 

was 100 cm and the outer was 27 cm, with a 0.016 cm RMS position error, resulting in 

about 1 milliradian RMS error in measuring bend angle, and about 1 mm RMS 

displacement error.  Decreasing outer detector spacing to 5 cm, for example, with the 

same detector resolution results in 6 milliradians RMS angle error and 5 mm RMS 

displacement error.  Unfortunately, increasing the outer detector spacing reduces the 

acceptance angle and so the number of muons available to sample the volume unless 

detector size is also increased.  For design of a real instrument such effects will need 

to be carefully considered relative to the requirements of the task. 

However, the ability of the MLSD algorithm to handle detector resolution in a 

principled manner is a major advantage relative to PoCA.  Figure 6.12 shows PoCA 

131 



 

and MLSD reconstructions of the test case #1 scene using 5 cm outer detector spacing 

and .016 cm RMS detector resolution.  The MLSD algorithm performs much better 

than PoCA when measurement error is substantial. 

(a) (b)

 
Figure 6.12 PoCA (a) and MLSD (b) classifications of test case #1 with more 

significant measurement error (dzo = 5 cm). 

6.2.5.2 Cosmic Ray Muon Momentum Spread 

Prior examples in this chapter were produced by simulating the passage of 

nominal momentum muons through the object area.  This was done to most clearly 

illustrate the relative performance of algorithms.  As explained in Chapter 2, real 

cosmic ray muons arrive at the Earth�s surface with varying momenta.  When muon 

momentum varies, the scattering variance expression in Eq. (6.15) is not valid.  For a 

muon with momentum p  the scattering variance is instead: 
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 (6.68) 

If muon momentum is known, varying momenta can be handled by adjusting the 

statistical model.  However, though the cosmic ray muon momentum distribution has 
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been studied and may be simulated through models such as the Blanpied generator 

described in Appendix A, the momentum of any individual muon is not known unless 

it is measured. 

In Section 3.3.3 a method was introduced for estimating muon momentum by 

measuring muon scattering through fixed planes of material of known composition 

and thickness.  If an estimate of the momentum of ray i  is available, then that estimate 

might be used as a proxy for the real momentum in Eq. (6.68).  However, since there 

is some uncertainty in the muon momentum estimate itself, this uncertainty must be 

accounted for.  Details of the statistical implications of momentum measurement by 

scattering are presented in Appendix B.  Based on that development, if a momentum 

estimate  is made, the equations describing the covariance matrix for ray i  in the 

MLSD algorithm are modified to: 

ip�

2�� θ∆+= EFv ipiθi λWθ  (6.69) 

xipiθxi EFs θ∆+= λWθx
��  (6.70) 

2�� xipixi EFv ∆+= λWx  (6.71) 

where the correction factor  is computed as: piF

2
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2 � 








=

i
ppi p

pMF  (6.72) 

pM 2  is the second moment of the fractional error in the muon momentum estimate, 

and is required to produce unbiased  reconstruction.  As discussed in Appendix B, 

the second moment of the momentum error decreases as the number of momentum 

measuring planes is increased.  The remainder of the MLSD algorithm is unchanged. 

λ�
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To illustrate the validity of this procedure, the simulation of test case #1 was 

repeated, but instead of monoenergetic muons the Blanpied generator [Blanpied] was 

used to produce muons drawn from the simulated cosmic ray muon spectrum.  

Simulation of passage of these muons through the object was performed with 

scattering values determined using the actual muon momenta.  Then muon momenta 

were estimated by simulating the passage of the muons through 3 plates of 5 cm thick 

iron.  Momenta estimates were then used in the MLSD algorithm.  The standard 

detector parameters of .016 cm RMS position resolution and 27 cm outer detector 

spacing were used.  Figure 6.13 shows PoCA and MLSD reconstructions.  The better 

performance of the MLSD algorithm is clear.  Though the MLSD reconstruction looks 

very good, the performance of the algorithm is deteriorated from the monoenergetic 

muon, no position error case (Prms=1.09 versus the previous value of 0.25) as would be 

expected from the Section 3.3.3 discussion. 

(a) (b)

 
Figure 6.13 PoCA (a) and MLSD (b) reconstructions for test case #1 with varying 

muon momenta and nominal position error levels. 
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6.2.5.3 Convexity of the MLSD Cost Function 

In some applications of maximum likelihood methods in medical imaging, 

reconstruction methods have been shown to be convex, which guarantees a global 

local minimum to the cost function with no local minima [46].  In the process of 

generating the results herein, local minima were not observed to be a problem.  For 

many cases the algorithm was run from various different starting points (e.g., starting 

with homogenous air, starting from the PoCA reconstruction, starting with a randomly 

filled object area) and the same final reconstruction was obtained for these different 

seeds.  However, the MLSD cost function is not a convex.  This was shown 

numerically by observing, during the solution process, the eigenvalues of the Hessian 

matrix of the cost function.  Though those eigenvalues are dominantly positive, there 

are negative eigenvalues as well, indicating directions of concave curvature.  

Therefore the existence of local minima cannot be ruled out. 

6.2.5.4 Regularization 

An investigation of regularization would be a significant effort, and application 

dependent, so is outside the scope of this dissertation.  However, regularization should 

be effective when prior information about the nature of likely objects is known.  For 

example, one heuristic regularization scheme would be to restrict the reconstructed 

scattering density to only the values corresponding to low, medium, or high Z material 

(and no material).  More traditional regularization, such as total variation or square 

gradient methods, are also of interest.  Any of these methods are easily incorporated 

into the MLSD framework by simply adding a weighted regularization term to the cost 

function.  This is an item of suggested further research. 
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6.2.6 Summary of Extended 2D MLSD Algorithm Performance 

The performance of the 2D PoCA and MLSD algorithms using variable muon 

momenta and nominal detector resolution were assessed by making 10 simulated runs 

of the each of the test cases previously discussed.  The exposure time was one minute 

for all test cases except test case #3, where an exposure time of two minutes was used.  

Results are shown in Table 6.2.  Performance of the MLSD algorithm, particularly in 

object classification, was superior in all cases. 

Table 6.2 Performance Measurements for Extended 2D Test Case Reconstructions 
(10 runs for each case) 

 Prms Pc 
 PoCA MLSD PoCA MLSD 

Test 
Case Mean Std Mean Std Mean Std Mean Std 

1 2.99 1.11 0.81 0.42 0.28 0.05 0.00 0.00 
2 3.43 0.96 1.56 1.23 0.27 0.03 0.00 0.00 
3 6.10 0.87 4.82 0.78 0.44 0.03 0.09 0.03 
6 9.77 0.66 6.50 1.82 0.98 0.04 0.28 0.05 
7 5.21 0.68 2.54 0.47 0.57 0.05 0.05 0.02 

 

As another way to examine algorithm performance, the confidence intervals on 

reconstructed scattering density for the three objects of test case #1 were calculated.  

The true scattering densities of the uranium, iron, and concrete blocks were 78.1, 14.2, 

and 2.3, respectively.  For the 10 MLSD runs, the ±2σ confidence intervals around the 

mean were [57.7, 75.2, 92.7] for the uranium block, [9.7, 13.0, 16.4] for the iron 

block, and [1.4, 2.1, 2.8] for the concrete block.  Theory (see Appendix B) suggests 

that these confidence limits should be at best ±30%, so these results are as good as 

could be expected.  For the PoCA algorithm, the values were [31.9, 62.6, 93.3], [5.7, 

9.0, 12.3], and [0.1, 1.1, 2.1] for uranium, iron, and concrete, respectively. 
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6.3 The 3D MLSD Algorithm 

6.3.1 The 3D MLSD Framework and Algorithm 

The MLSD framework may be extended to 3D.  The first step in expanding the 

2D framework of Section 6.2.1 is to replace the 2D pixel grid covering the object area 

with a 3D voxel grid covering the object volume.  Reconstruction of scattering density 

within each voxel is sought, expressed again as the vector λ� .  The ray pixel path 

length vectors  and T  of the 2D framework are redefined to express ray path 

lengths through 3D voxels.  As discussed in Section 3.2, scattering into two 

orthogonal planes may be measured for each ray: 

L

xθ∆  and yθ∆ .  Scattering into the  

plane is i.i.d. to scattering into the 

y

x  plane.  Two i.i.d. measurements of displacement, 

 and , are also be made.  The statistical development of Section 6.2.1 applies to 

the 3D problem, and the covariance matrix expressed in Eqs. (6.37-40) applies to both 

the 

x∆ y∆

x  plane and  plane measurements.  One approach would be to simply double the 

size of the problem by treating the two plane measurements separately.  However, if 

the two plane measurements are combined by defining, for ray : 
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then the cost function of Eq. (6.46) may be used after expanding to: 
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The 3D MLSD algorithm is listed below. 

3D MLSD Algorithm 

1. Establish an  grid of  sized voxels over the object volume.  
Establish a Cartesian coordinate system in three dimensions with 

NxNxN LxLxL
z  vertical.  

Measured data is ( )
inyxzyx θθ ,,,,  and ( )

outyxzyx θθ ,,,, for each of M  rays. 
2. For    % loop over rays Mi   to1:=

2.1. ( )( ) ( )( )
iinyxinyx zyxzyx θθθθ ,,,,:,,,, =    % Get ray data 

2.2. ( )( ) ( )( )
ioutyxoutyx zyxzyx θθθθ ,,,,:,,,, =    % Get ray data 

2.3. ( )inxoutxx ,,: θθθ −=∆     % Compute x  scattering signal 
2.4. ( )inyoutyy ,,: θθθ −=∆     % Compute  scattering signal y
2.5. ( ) 2: ,, outxinxx θθθ +=    % Compute average x  ray angle 
2.6. ( ) 2: ,, outyinyy θθθ +=    % Compute average  ray angle y
2.7. ( ) ( inoutinxinproj zzxx −⋅+= ,tan: )θ    % Compute projected un-deflected x  position 

2.8. ( ) ( inoutinyinproj zzyy −⋅+= ,tan: )θ    % Compute projected un-deflected  position y

2.9.    % Compute 1tantan: ,
2

,
2 ++= inyinxxyF θθ xy  adjustment factor 

2.10.    % Compute 1tan: ,
2 += inxxF θ x  adjustment factor 

2.11.    % Compute  adjustment factor 1tan: ,
2 += inyyF θ y

2.12. ( )( ) xxxyprojout FFxxx θcos: −=∆    % Compute x  displacement 

2.13. ( )( ) yyxyprojout FFyyy θcos: −=∆    % Compute  displacement y

2.14. ( ) ( ) 2: 22
yxi θθ ∆+∆=∆θ    % Compute scattering signal 

2.15. ( ) ( ) 2: 22 yxi ∆+∆=∆w    % Compute displacement signal 

2.16. ( ) ( ) 2: yxi yx ∆∆+∆∆= θθ∆θw    % Compute cross-term signal 

2.17. [ ] ( )outyoutxoutoutoutinyinxininin zyxzyxDraysum ,,,, ,,,,,,,,,3:, θθθθ=TL    % Compute 
the estimated ray path lengths through each voxel. 

2.18.   % Compute row of angle weights ( ) LWθ =::,i
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2.19. ( ) [ ]222 2...22::, 2
22

2
211

2
1 NNN TLLTLLTLLi +++=θxW  

   % Compute row of angle/displacement weights 

2.20. 
( )

[ ]22222
223

2
2

2
2
22

3
21

2
1

2
11

3
1 3...33

::,

NNNNN
LTLTLLTLTLLTLTL

i

++++++

=xW
 

   % Compute row of displacement weights 
3. Next  i
4.    % Initialize scattering density vector to the value for air (the PoCA 

solution may also be used as a starting point) 
airλ=:�

0λ

5. ( )∆θw∆w,∆θ,,W,WW,λ θxxθ ,�: 00 fcsttxC =
( )⋅fcsttx

   % Compute initial cost, where 
 is the Eq. (6.76) cost function 

6.    % Set cost function reduction limit (other values might be used). 9101: −= xCl

7. Do 
7.1. ( )[ ]airfcsttxfminconC λ,,�:]�,[ 011 ∆θw∆w,∆θ,,W,WW,λλ θxxθ=

0λ�

air

   % 

Compute new scattering density estimate, from start point  with lower 
bound λ  on all elements. 

7.2.   % Compute reduction in cost function 01: CCCd −=

7.3.    % Update scattering strength estimate 10 λλ �:� =
7.4.    % Update cost function 10 : CC =

8. While    % Loop while cost function reduction is greater than limit ( ld CC > )
9.    % Save last estimate as optimal estimate 0

�:� λλ =opt

 

6.3.2 Numerical Tests of the 3D MLSD Algorithm 

In Section 4.2.4 two 3D test cases were developed for illustrating the 3D PoCA 

algorithm.  The simulated object volume was a cube 100 cm on a side, for a total of 

1000 (10 cm)3 voxels.  Monoenergetic muons were used in Section 4.2.4, but for 

comparison of the 3D PoCA and MLSD algorithms muon momenta were made 

variable, measured by 3 scattering planes as in 2D testing.  Detector resolution of 

0.016 cm RMS with an outer detector spacing of 100 cm was also simulated.  To 

simulate 1 minute of exposure 100,000 muons were simulated, and about 20,000 

passed through the object volume and were used for reconstruction. 
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Results for 3D test case #4 are shown in Figure 6.14.  The upper left cube is 

made of concrete, the center cube of uranium, and the bottom right cube of iron.  The 

PoCA results are deteriorated from those of Section 4.2.4 due to the addition of muon 

momenta spread and detector resolution.  Two of the cubes were misclassified and 

many artifacts are apparent.  The MLSD results are much better, with all cubes 

correctly classified and many fewer artifacts. 

(a) (b)

(c)

Prms=0.23

Pc=0.005

(c)

Prms=0.23

Pc=0.005

(c)

Prms=0.23

Pc=0.005

Prms=8.63

Pc=0.019

 
Figure 6.14 Results for 3D test case #4.  The object classification (a), the PoCA 

classification (b), and the MLSD classification (c). 

Results for 3D test case #5 are shown in Figure 6.15.  This is a difficult case 

since the plates �shadow� one another given the vertical tending muon trajectories.  

The three plates are virtually indistinguishable in the PoCA reconstruction.  The 
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MLSD reconstruction is much better, though some blurring between the plates is 

apparent.   

(c)

Prms=2.12

Pc=0.044

Prms=27.62

Pc=0.209

Prms=27.62

Pc=0.209

(a) (b)

 
Figure 6.15 Results for 3D test case #5.  The object classification (a), the PoCA 

classification (b), and the MLSD classification (c). 

6.4 Application of MLSD to Experimental Data 

Unfortunately the number of voxels and rays required to reconstruct the 

experimental data of Chapter 5 exceeds the memory and processing speed available in 

the current implementation of the MLS or MLSD algorithms in a MATLAB platform 

on a standard PC.  The computational burden of the MLSD algorithm increases 

approximately proportional to the number of rays times the square of the number of 

voxels.  The tests of the previous section involved about 20,000 rays and 1000 voxels, 

whereas reconstruction of the experimental data would require 100,000 rays and 

141 



 

several thousand voxels.  Optimization of the MLSD algorithm and implementation in 

an appropriate platform will be required to handle this larger problem size.  This is an 

item of future work. 

6.5 Summary 

In this chapter two new algorithms for the tomographic reconstruction of objects 

through use of the scattering of cosmic ray muons were presented.  The performance 

of these algorithms was compared to and contrasted with the performance of the PoCA 

(Point of Closest Approach) algorithm of Chapter 4.  The MLS (Maximum Likelihood 

Scattering) algorithm is a natural extension to traditional tomographic methods, and 

performs better than the PoCA method for simple scenes, but does not make use of all 

the information available from the muons, and should be considered to be primarily a 

pedagogical algorithm.  The MLSD (Maximum Likelihood Scattering and 

Displacement) algorithm makes use of both muon scattering and displacement, and 

allows information to be localized along the path of a ray.  This is of particular 

advantage in limited angle tomography (such as tomography using cosmic ray muons) 

where no horizontal views are obtainable.  The MLSD algorithm was shown to 

perform better than the PoCA or MLS algorithms for a variety of test cases. 

The iterative reconstruction framework allows for the inclusion of measurement 

error and other factors in the reconstruction process by folding those factors into the 

statistical model.  The incorporation of detector resolution error and muon momentum 

spread into the algorithm was presented and illustrated.  Regularization, though not 

investigated herein, could be easily incorporated into the algorithm. 
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A disadvantage of the MLSD algorithm relative to PoCA is that is much more 

consumptive of computational resources.  For an application such as border crossing 

nuclear contraband detection effort will need to be devoted to accelerating the 

convergence speed of the algorithm.  Using the PoCA algorithm to generate a starting 

condition for MLSD is appropriate, and determining a reasonable stopping condition 

will be important.  Optimization of numerical methods, though outside the scope of 

this dissertation, could yield benefits.  For other applications of cosmic ray muon 

radiography real time radiography may not be necessary, and the MLSD algorithm 

may be very appropriate for accurate reconstruction in such applications. 
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CHAPTER 7 
CONCLUSION 

7.1 Summary 

This dissertation described key aspects of the development of an entirely new 

form of radiography using cosmic ray muons.  Chapter 2 established the background 

for cosmic ray muon radiography by describing cosmic ray muons, how they are 

formed, how they interact, what has been previously attempted in this area, and how 

tomographic reconstruction works in general.  In Chapter 3 the concept for multiple 

scattering radiography using cosmic ray muons was presented, and multiple scattering 

as an information source was analyzed.  A new method for the measurement of muon 

momentum via multiple scattering was also presented (and fully analyzed in Appendix 

B).  The tomographic framework was established in Chapter 4, and the PoCA (Point 

of Closest Approach) reconstruction method was presented and illustrated through 

simulated examples.  In Chapter 5 the design of and results from an experimental 

proof of principle were presented.  The PoCA reconstructions from experimental data 

presented in Chapter 5 represent the world�s first cosmic ray muon radiographs made 

using multiple scattering.  Finally, in Chapter 6 a fully tomographic reconstruction 

algorithm for cosmic ray muon radiography was developed.  The MLSD (Maximum 

Likelihood Scattering and Displacement) algorithm expresses both the statistical 

nature of the scattering and displacement of muons and the measurement noise and 
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momentum uncertainty present in cosmic ray muon radiography.  Results from the 

algorithm were presented and shown to be uniformly superior to those of PoCA.   

7.2 Items for Future Research 

7.2.1 Regularization 

Regularization, or the incorporation of prior knowledge into the reconstruction 

process, is almost certain to improve reconstruction quality.  Application of 

regularization is likely to be application specific.  However, an investigation of some 

of the most generally effective methods of regularization would be interesting.  The 

MLSD framework is easily extended to include regularization. 

7.2.2 Application of MLSD to Nuclear Contraband Detection 

The application for which much of this work was funded, as discussed briefly in 

Chapter 1, is the detection of nuclear contraband in vehicles and shipping containers.  

The size of this problem should challenge the computation efficiency of the MLSD 

algorithm and may demand extensive optimization of the method to obtain sufficient 

convergence speed. 

7.2.3 MLSD with Adaptive Reconstruction Elements 

For applications wherein small objects in large volumes are expected, it is a 

waste of resources to reconstruct many voxels that contain no material.  If 

reconstruction elements were made adaptively resizable and locatable then fewer 

elements might be possible resulting in a lower computational load. 

7.3 Final Remarks 

The work presented herein is new and significant in two primary ways.  Firstly, 

cosmic ray muon radiography represents a completely new mode of radiography.  The 
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experimental radiographs in Chapter 5 are the first radiographs of small objects ever 

made with passive cosmic ray muons.  Significant relevant applications for this 

technology exist.  Though this development was a collaborative effort, the author�s 

contributions to analysis and experimental proof of the concept, as detailed in this 

dissertation, were substantial. 

Secondly, the MLSD algorithm, which is the completely individual work of the 

author, is a totally new tomographic reconstruction algorithm driven by the nature of 

multiple scattering.  It is not yet known whether the principles of the MLSD algorithm 

might be applicable to other information sources, but that possibility exists. 
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APPENDIX A 
BLANPIED MUON GENERATOR 

The cosmic ray muon flux may be empirically described in terms of muon 

momentum9 and arrival (zenith) angle, as introduced in Chapter 2.  For Monte Carlo 

simulation of cosmic ray muon radiography, it is desirable to have the ability to 

randomly generate muons with momenta and arrival angle congruent with that 

spectrum.  In support of the LANL muon radiography effort Gary Blanpied of the 

University of South Carolina developed a software muon generator [14].  The author 

participated in the testing and fine-tuning of this software.  A summary of the 

generator and its validation appear in this appendix. 

The generator is based on a model of pion!muon decay at an altitude of 15 km 

and survival rate of muons passing through the atmosphere to sea level.  The physics 

were modeled after [9], with some empirical tweaking of parameters to match 

published muon flux data.   

At the root of the model is the generation of a lookup table version of the 

differential spectrum ( )θ,ED  in [cm-2·sr-1·sec-1·GeV-1].  Two major experimental 

datasets exist within the literature tabulating ( )00, =θED  [11] and ( )075, =θED  

[10].  Figure A.1 shows the differential spectra from the Blanpied model against 

                                                 
9 For cosmic ray muons, momentum and energy are virtually identical, and in this 
discussion energy will sometimes be used in place of momentum. 
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experimental data.  The agreement is fairly good, although the under prediction at low 

energies is a bit disturbing, since muons from this low energy portion will scatter 

more.  Improving the model at low energies is an item for future work. 
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Figure A.1 Comparison of differential muon spectra from model with experimental 

data. 

An oft quoted �rule of thumb� is that the spectra with respect to zenith angle is 

roughly proportional to ( )θ2cos  for energies near the mean (about 3-4 GeV).  Plotted 

in Figure A.2 is the model generated differential spectrum against zenith angle for 4 

GeV energy muons.  Also shown is an appropriately weighted  curve, 

showing approximate agreement. 

( )θ2cos

However, Figure A.2 does not represent the true spectrum for zenith angle in a 

spherical coordinate system due to solid angle effect.  The zenith angle spectrum from 

the model, adjusted for solid angle, is shown in Figure A.3.  Because of the solid angle 

effect, the mean zenith angle is about 35°, with no muons arriving at a 0° angle. 
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Figure A.2 Model differential muon spectrum wrt zenith angle for E = 4 GeV. 
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Figure A.3 Model differential muon spectrum wrt zenith angle, adjusted for solid 

angle. 

To deal with the coupled distribution in generating muons, the model first 

selects a zenith angle θ , and then selects an energy E  based on the selected θ .  To do 

this, the differential spectrum is integrated across the total E  range, and is then 
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multiplied by ( )θπ sin2  to incorporate the effect of solid angle.  This result is 

converted to a normalized table wherein a random number [0,1] is used to select a θ .  

To select E , the differential spectrum is integrated and normalized within each θ  bin 

to produce an E  selection table for each θ  bin.  After selecting θ , the appropriate E  

table is used to select E . 

10
-1

Previous plots have shown the differential spectrum from which muons are 

drawn.  A dataset of 1 million muons was produced from the model.  A distribution of 

energy of those muons is shown in Figure A.4.  The distribution does not look like the 

one shown in Figure A.1, but does after adjusting for bin size, as shown in Figure A.5. 
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Figure A.4 Energy distribution of 1,000,000 muons drawn from generator. 
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Figure A.5 Energy distribution of 1,000,000 muons, adjusted for bin size. 

Finally, a histogram of zenith angles of the 1 million muons is shown in Figure 

A.6.  This distribution matches that shown in Figure A.3. 
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Figure A.6 Distribution of zenith angles of 1,000,000 muons drawn from 

generator. 

In summary, the results from muons drawn from the Blanpied generator are 

congruent with the underlying differential spectra model.  That model matches 
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experimental data fairly well, with modest under prediction of the rate of low energy 

(<1 GeV) muons.  This problem at low energies should be investigated, but the results 

were judged to be adequate for use at the present time. 
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APPENDIX B 
MUON MOMENTUM MEASUREMENT BY MULTIPLE SCATTERING 

In Section 3.3.3 the idea of measuring muon momentum by measuring multiple 

scattering through a known piece of material was introduced.  In this appendix the 

uncertainty in muon momentum measurement and the resultant uncertainty in 

measuring the scattering density of unknown material will be addressed. 

B.1 Inferring Material via Scattering of Particles with Estimated Momentum. 

Referring to Figure 2.4, let us pass  particles vertically through the material.  

For each particle we have 

N

iθ , the plane scattering angle, and , the particle 

momentum.  Scattering is normally distributed with zero mean and standard deviation: 

ip

radi L
L

pi

15
=θσ  (B.1) 

Assume that iθ  is measured perfectly, but estimates of momentum are made 

characterized as follows: 

ip� : Estimated particle momentum. 

iii ppp −=∆ � : Error in momentum estimate. 

i

i

p
p∆ : Fractional error of momentum estimate. 

i

i

p
p� : Momentum estimate ratio. 

pE : RMS of fractional error of momentum estimates. 

0=






 ∆
p
pE : Momentum estimate is unbiased. 
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Each scattering measurement will be normalized to account for varying particle 

momentum: 

0p : Arbitrary �nominal� particle momentum 

0
, p

pi
iir θθ = : �Real� normalized scattering (unobserved) 

0
,

�
p
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iin θθ = : Estimated normalized scattering 

Define the normalized scattering standard deviation: 
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We wish to infer normalized scattering tendency from measured scattering to 

infer material composition.  Note that: 
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What are the statistics of ?  First deriving the mean: S
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So the signal  is a S biased estimator of , and scattering and thus material density 

will be overestimated.  To avoid this, 

2
0σ

redefine the signal as: 
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which is an unbiased estimator of . 2
0σ

Next, derive the variance of this new signal: 
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Finally, expressing the fractional precision of the signal estimate: 
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When momentum is known perfectly the expression under the second radical 

goes to one, resulting in the familiar expression: 
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B.2 Using Scattering to Estimate Momentum 

If measurement of momentum is achieved by making M  measurements of 

scattering of a single particle through a known piece of material, we may write 

p
K

=θσ  (B.25) 
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Let 

2

2

θσ
Msx =  (B.29) 

The distribution of x  is  [33]. (M2Χ )
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where u  is the unit step, and the gamma function is defined as: ( )x

( ) dyeya ya −∞ −∫=Γ
0

1  (B.31) 

Rewriting the momentum estimate in terms of x : 

x
Mp

x
MKp == 2

2

�
θσ

 (B.32) 

For an unbiased estimate, ( ) ppE =� , so we check the expected value of the 

estimate. 
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Let 2xz =  and substitute into Eq. (B.34): 
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So the momentum estimate is biased.  Define the correction factor: 
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and redefine the momentum estimate to be unbiased as: 
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For the unbiased estimator, 
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To apply these results to the derivation of Section B.1, additional moments are 

required.  The second moment is: 
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Applying the identity ( ) ( )aaa Γ⋅=+Γ 1 , 
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The fourth moment is: 
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B.3 Inferring Material via Scattering of Particles with Momentum also Estimated 
via Scattering 

Inserting the result of section B.2 into the results from section B.1: 
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The final equation Eq. (B.56) represents the uncertainty in estimating material 

mean square scattering by making  scattering measurements of particles passing 

through the unknown material and normalizing with momentum estimated by making 

N

M  scattering measurements of each particle through known material. 

Eq. (B.8) requires a finite second moment of momentum uncertainty to remove 

bias from the scattering estimate.  Eq. (B.45) shows that the adjustment factor is finite 

only when 2>M , so the methods discussed in this appendix require at least two 

scattering measurements for momentum inference.  Eq. (B.56) shows that the signal 

uncertainty is finite only for 4>M .  However, simulated tests show that reasonable 

results can be obtained using 4=M  if an upper bound is established for inferred 

momentum.  Using an upper bound of 25 GeV 4=∆ MSS was found to be about 1.5 

times 6=MS∆ . S
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APPENDIX C 
DERIVATION OF JACOBIAN AND HESSIAN OF COST FUNCTIONS FOR MLS 

AND MLSD ALGORITHMS 

In this appendix the derivation of Jacobian and Hessian matrices required for the 

Newton-type method minimization of MLS and MLSD algorithm cost functions will 

be presented. 

C.1 Jacobian and Hessian for the MLS Cost Function 

Consider a general cost function which is a sum of  elements, where each 

element is function of a differently weighted sum of elements in an 

N

M  element 

parameter vector x  

( ) ( )∑
=

⋅=
N

i
FC

1
xWx i  (C.1) 

The Jacobian vector of  will be denoted ( )xC ( )xJ  and is defined as the vector 

of partial derivatives: 

( )
T

Mx
C

x
C

x
C









∂
∂

∂
∂

∂
∂

= ...
21

xJ  (C.2) 

If τ  is a scalar and  is an arbitrary v M  element direction vector, the directional 

derivative of (x )vτ+C  at  in the direction  is related to the Jacobian matrix as 

[Vogel]: 

x v

( ) ( ) vxJvx ⋅=+
=0τ

τ
τ

C
d
d  (C.3) 
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The left side of Eq. (C.3) is the directional derivative, and the right side is the inner 

product of the Jacobian vector and the direction vector.  Expanding Eq. (C.1), 

( ) ([∑
=

+⋅=+
N

i
FC

1
vxWvx i ττ )] (C.4) 

The directional derivative is: 

( ) ( ) vWxWvx ii ⋅⋅=+ ∑
==

N

i
F

d
dC

10

'
τ

τ
τ

 (C.5) 

where ( )
zz

dzdFzF ~
~'

=
≡

thi

.  The right side of Eq. (C.5) may be placed in the form of the 

desired inner product by creating the matrix  whose i  row is  and the vector 

 whose  element is 

W th T
iW

F' ( )xW ⋅1'F  and proceeding as: 

( ) WvF'vx T=+
=0τ

τ
τd

dC  (C.6) 

( ) ( ) vF'Wvx ⋅=+
=

T

d
dC

0τ

τ
τ

 (C.7) 

From which the Jacobian vector may be extracted, using Eq. (C.3): 

F'WJ(x) T=  (C.8) 

The Hessian matrix of ( )xC  will be denoted ( )xH  and is an  matrix with 

elements defined as: 

MxM

( )[ ]
ji

ij xx
C
∂∂

∂
=

2

xH  (C.9) 

The Hessian may be expressed in terms of the second variation of  as [Vogel]: ( )xC

( ) ( )[ ] wvxHwvx ⋅=++
∂∂

∂

=0,

2

ξτ

ξτ
ξτ

C  (C.10) 
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Evaluating the second variation: 

( ) [ ]( )( wWvWxWwvx iii ⋅⋅⋅=++
∂∂

∂ ∑
==
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i
FC

10,

2

''
ξτ

ξτ
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where ( )
zz

dzFdzF ~
22~''

=
≡

'

.  Using the aggregate weight matrix  as previously, 

and defining the vector F'  whose  element is 

W

thi ( )xW ⋅1''F , 

( ) ( ) (Wv'F'Wwwvx )(
0,

2

diagC T=++
∂∂

∂

=ξτ

ξτ
ξτ

)

)

 (C.12) 

where  denotes the  diagonal matrix whose diagonal elements are the 

elements of . 

( 'F'diag

'F'

NxN

( ) ( vW'F'Wwwvx )(
0,

2

diagC TT=++
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∂

=ξτ

ξτ
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)  (C.13) 

( ) ([ wvW'F'Wwvx ⋅=++
∂∂

∂

=

)(
0,

2

diagC T

ξτ

ξτ
ξτ

) ]  (C.14) 

From Eq. (C.14) and Eq. (C.10), the Hessian matrix may be expressed as: 

( ) W'F'WxH )(diagT=  (C.15) 

So the calculation of Jacobian and Hessian matrices is reduced simply to 

calculation of the  and  vectors for a particular function F' 'F' ( )⋅F  then using Eqs. 

(C.8,15). 

The cost function for the MLS algorithm is: 

( ) ( )∑
=
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The function  is: ( )⋅F
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( ) ( )
xW

xWxW
i

ii

2

ln isF +=  (C.17) 

Expressions for the elements of the vectors  and F'  are simply calculated: F' '

( )2
21
xWxW

F'
ii

i
i

s
−=  (C.18) 

( ) ( )3
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Eqs. (C.8,18) define the Jacobian, and Eqs. (C.15,19) the Hessian for the MLS 

algorithm. 

C.2 Jacobian and Hessian for the MLSD Algorithm 

The cost function for the MLSD algorithm is of the form: 

( ) ( )[∑
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where d  is a data vector and  [ T
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The cost function is thus a summation of a function of three different weighting of . x

The Jacobian in this case is: 

'FW'FW'FWJ(x) x
T
xx

T
x

T ++= θθθθ  (C.22) 

where  are aggregate weight matrices constructed as was  in Section 

C.1.  F  is a vector whose i  element is 

xx WWW ,, θθ

'θ

W

th

ivv
vF

θθ
θ =

∂∂ , F  is a vector whose i  

element is 

'xθ
th

xix sθ=sxsF
θ

θ∂∂ , and  is a vector whose i  element is 'xF th

xix vv
F

=
∂ xv∂ . 
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The Hessian is: 
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where  is the vector whose  element is ''θθF thi
ivv

vF
θθ

θ =
∂∂ 22 ,  is the vector whose 

 element is 
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thi
xiv=xi vvvxvvF
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θ∂ , F  is the vector whose i  element is ''xθθ
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Expanding the summed function: 
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Working out the first derivates: 

( ) ( ){ }ixxxxxxxxxi svvsxv - v + x + ss+ vvv 22222222 2 θθθθθθθ θθ −−−='F  (C.25) 

( ) ( ){ }ixxxxxxix svvsxv - v + x + ss+ vvv 22222222 2 θθθθθθθθθ θθ −−−='F  (C.26) 

( ) ( ){ }ixxxxxxxxxxix svvsvx xs  vxvsv+ ssvv 2222232 θθθθθθθθθθθ θθθ −+−−+−='F  (C.27) 

And the second derivatives: 
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These results complete the derivation.
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